“Theobromine, a commonly consumed dietary alkaloid derived from cocoa, has been linked to extended lifespan in model organisms and to health benefits in humans.”
When we think of aging, we often picture wrinkles or gray hair. But aging also occurs deep within our cells. One key area of research focuses on “epigenetic aging,” the gradual changes in how DNA is regulated over time. These changes are tracked using tools called epigenetic clocks, which estimate a person’s biological age based on specific molecular markers in the blood. Unlike chronological age, biological age reflects the body’s functional state and can be influenced by health, lifestyle, and environmental factors.
While chocolate and coffee have been associated with better health outcomes, pinpointing the responsible specific compounds has been difficult. These foods contain multiple bioactive substances that are often consumed together, and few studies have explored their individual effects on the human epigenome, the system of chemical modifications that control gene activity and change with age.
A recent study provides new insight, suggesting that theobromine, a compound naturally found in cocoa, may be associated with slower biological aging in humans.
The Study: Investigating Theobromine and Epigenetic Aging in TwinsUK and KORA Cohorts
The research titled “Theobromine is associated with slower epigenetic ageing,” was led by Ramy Saad from King’s College London and Great Ormond Street Hospital for Children NHS Foundation Trust, alongside Jordana T. Bell from King’s College London. The study was recently published in Aging-US.
The team analyzed blood sample data from over 1,600 healthy individuals in two large population-based studies: TwinsUK in the United Kingdom and KORA in Germany. They investigated six compounds commonly found in coffee and cocoa, including caffeine, theophylline, and theobromine, to assess their potential relationship with two well-established epigenetic aging measures: GrimAge, which estimates the risk of early death, and DNAmTL, which reflects telomere length, a marker of cellular aging.
Results: Higher Theobromine Levels Are Associated With Slower Biological Aging
The study found that individuals with higher blood levels of theobromine had slower biological aging, as measured by both GrimAge and DNAmTL. This suggests that their cellular and molecular profiles appeared younger than their chronological age. The initial findings from the female twin cohort in the UK were confirmed in Germany’s KORA cohort that includes a larger and more diverse population.
Importantly, the researchers accounted for other compounds commonly found in cocoa and coffee, such as caffeine, and still observed the same effect. The association remained significant even after adjusting for variables such as diet quality and smoking history. Interestingly, the effect was particularly notable in individuals who had previously smoked. The researchers also ruled out potential biases related to differences in the timing of sample collection.
Breakthrough: Theobromine Shows a Unique Link to Slower Epigenetic Aging
Theobromine appeared to act independently of other similar molecules and showed a specific association with slower epigenetic aging. While structurally similar to caffeine, theobromine behaves differently in the body and is found in higher concentrations in cocoa-rich foods like dark chocolate. Previous research has associated it with improvements in blood pressure and cognitive function, but this study is among the first to connect it with molecular markers of aging.
Impact: Theobromine Identified as a Potential Dietary Target for Healthy Aging
If validated by future studies, theobromine could emerge as a promising target for dietary or therapeutic strategies aimed at supporting healthy aging. The findings strengthen the growing understanding that specific dietary components can influence the aging process, not only through visible, external signs, but also at the molecular and cellular levels. While theobromine is abundant in cocoa products, the study does not advocate increased chocolate consumption. Instead, it highlights the potential role of naturally occurring plant-based compounds in modulating biological aging and contributing to long-term health.
Future Perspectives and Conclusion
As with all observational studies, this research establishes association rather than causation. More studies, particularly randomized clinical trials, will be needed to determine whether increasing theobromine intake can directly slow biological aging.
Nevertheless, the results suggest that theobromine may be one reason cocoa-rich diets have been linked with cardiovascular and cognitive benefits. As scientific interest grows in how nutrition influences epigenetic aging, compounds like theobromine may play an increasingly important role in understanding and potentially extending human healthspan.
Click here to read the full research paper published in Aging-US.
___
Aging-US is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed Central, Web of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).
Click here to subscribe to Aging-US publication updates.
For media inquiries, please contact [email protected].