Alpha-Synuclein Overexpression in Rats Reveals Early Clues to Synucleinopathies

“Synucleinopathies are age-dependent neurodegenerative diseases characterized by alpha-synuclein accumulation with distinct vulnerabilities across brain regions.”

Synucleinopathies are a group of age-related neurological disorders, including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Most individuals are not diagnosed until these diseases have significantly progressed, as early symptoms, such as a reduced sense of smell, subtle cognitive or motor changes are too vague to serve as reliable indicators. 

To uncover specific biological signs that appear earlier and clearly point to the disease process, researchers from Saarland University developed a study titled Brain region-specific and systemic transcriptomic alterations in a human alpha-synuclein overexpressing rat model,” featured as the cover of Aging-USVolume 17, Issue 10.

Understanding Synucleinopathies

Synucleinopathies are characterized by the abnormal buildup of the protein alpha-synuclein in the brain. When this protein misfolds, it accumulates inside neurons and forms toxic clumps that disrupt their normal function and threaten cell survival. Because brain samples from patients are usually obtained only after death, scientists rely on animal models to investigate how these diseases start and progress.

The Study:  Exploring Early Gene Changes Associated with Synucleinopathies

A research team from Saarland University, led by Vivien Hoof and Thomas Hentrich, studied a genetically engineered rat model that overexpresses the human form of alpha-synuclein. Their goal was to examine how this protein affects gene activity in both the brain and the gut at different life stages.

The researchers focused on three brain regions known to be involved in movement and cognition: the striatum, cortex, and cerebellum. They examined gene expression in rats at two ages, at five and twelve months, representing early and mid-adulthood, roughly equivalent to young and middle-aged humans. Gut tissue was also studied to better understand the possible systemic effects of alpha-synuclein accumulation.

The Results: Early and Widespread Gene Changes Across the Brain and Gut

The study revealed that gene activity was more significantly disrupted in younger rats, particularly in the striatum, a key area for motor control. Many of the affected genes were involved in communication between nerve cells, suggesting that vital brain functions start shifting early in the disease process.

In older rats, changes were especially noticeable in the cortex and related to myelination, the process that insulates nerve fibers. Similar patterns have also been observed in patients with synucleinopathies, highlighting the value of the rat model.

Importantly, the team identified a core group of genes that were consistently altered across all three brain regions. Some of these same gene changes were also found in the gut, suggesting that the impact of alpha-synuclein accumulation is not limited to the brain but may influence the entire nervous system, including the enteric (gut) nervous system.

The Breakthrough: Evidence That Synucleinopathies May Begin Long Before Symptoms Appear

This study provides compelling evidence that synucleinopathy-related changes begin early at the molecular level, well before clinical symptoms emerge, challenging the notion that such diseases only manifest in later life. These early alterations are both brain region-specific and systemic. The presence of similar gene changes in the gut supports the growing understanding that synucleinopathies are not just brain disorders, but may affect the entire body. These early molecular signals could serve as biomarkers, helping to detect disease before lasting damage occurs.

The Impact: Opening New Paths for Early Detection and Intervention

These findings could shift research toward diagnosing synucleinopathies in their earliest stages. If similar patterns of gene activity can be identified in humans, potentially through blood or stool samples, it may be possible to detect these diseases years before symptoms arise. Early detection could enable timely and more effective treatment.

The study also sheds light on previously overlooked genes involved in neuroprotection and neural communication, which may become new targets for therapeutic development.

Future Perspectives and Conclusion

While synucleinopathies are often seen as diseases of aging, this study highlights that crucial biological changes may occur far earlier. Mapping these early molecular changes provides a strong foundation for developing new diagnostic tools and early-stage treatments. It also reinforces the need to study not just the brain but the entire nervous system, including the gut, which may serve as an accessible window into early disease processes.

Click here to read the full research paper published in Aging-US.

___

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

Now Accepting Submissions: Special Collection on Cognitive Aging

In this special collection, Aging seeks to bring together cutting-edge research that spans the cellular and molecular underpinnings of cognitive aging with insights into the psychosocial, behavioral, and environmental factors that modulate its course.

BUFFALO, NY — July 8, 2025 — As populations worldwide continue to age, understanding the mechanisms and manifestations of cognitive aging is increasingly urgent for science, medicine, and society. Age-related cognitive decline ranges from mild memory lapses to the onset of dementia, and is shaped by a complex interplay of molecular, cellular, systemic, and social determinants.

In this special collection, Aging (Aging-US) seeks to bring together cutting-edge research that spans the cellular and molecular underpinnings of cognitive aging with insights into the psychosocial, behavioral, and environmental factors that modulate its course. By integrating basic biology with translational and societal dimensions, this collection aims to foster a holistic understanding of how and why cognitive function changes with age—and what can be done to preserve it.

We welcome original research articles, reviews, and perspectives across model systems and human studies, particularly those that promote interdisciplinary insights and translational potential.

POTENTIAL TOPICS

Molecular and Cellular Mechanisms

  • Senescence, inflammation, and neurodegeneration in cognitive decline
  • Mitochondrial dysfunction and oxidative stress in aging neurons
  • Neurovascular aging and blood-brain barrier integrity
  • Single-cell and spatial transcriptomics of the aging brain
  • mTOR, autophagy, and proteostasis in age-related cognitive impairment
  • The role of glial cells (microglia, astrocytes) in brain aging

 Genetics and Biomarkers

  • Genetic risk factors and epigenetic modifications associated with cognitive aging
  • Biomarkers of cognitive resilience and vulnerability
  • Neuroimaging and fluid-based biomarkers in aging populations

Interventions and Lifestyle Factors

  • Cognitive benefits of caloric restriction, exercise, or senolytic therapies
  • Preclinical and clinical trials targeting aging pathways to prevent cognitive decline
  • Impact of sleep, nutrition, and metabolic health on cognition in older adults
  • Use of cognitive strategies and compensatory techniques to maintain or enhance function in aging

Environmental and Social Contexts

  • Impact of social isolation, education, and socioeconomic status on cognitive trajectories
  • Lifelong cognitive reserve and its determinants
  • Cross-cultural and demographic studies on aging and cognition
  • Digital health tools for monitoring or enhancing cognitive function in the elderly

SUBMISSION DETAILS:

______

To learn more about the journal, please visit our website at www.Aging-US.com​​ and connect with us on social media at:

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

DoliClock: A Lipid-Based Clock for Measuring Brain Aging

Aging is a multifaceted process influenced by intrinsic and extrinsic factors, with lipid alterations playing a critical role in brain aging and neurological disorders.”

A new study published recently as the cover of Aging Volume 17, Issue 6, describes a new method to estimate how fast the brain is aging. By analyzing lipids, or fat molecules, in brain tissue, researchers from the National University of Singapore and Hanze University of Applied Sciences created a biological “clock” called DoliClock. This innovation highlights how conditions such as autism, schizophrenia, and Down syndrome are associated with accelerated brain aging.

Understanding Brain Aging

As people grow older, their brains naturally change. However, in many neurological disorders, these changes seem to appear earlier and progress more rapidly. Disorders like autism, schizophrenia, and Down syndrome reduce quality of life and contribute to premature death. Scientists have long searched for better ways to measure biological age in the brain to understand these processes and develop strategies to slow them down.

Most existing methods for estimating biological age rely on genetic markers, such as DNA methylation, which are chemical modifications of DNA. While useful, these approaches may not fully capture the complexity of aging, especially in the brain. Lipids, which are essential components of brain cells and play important roles in energy storage and signaling, offer another perspective.

The Study: Building a Lipid-Based Aging Clock

A team led by first author Djakim Latumalea and corresponding author Brian K. Kennedy introduced DoliClock, a model that predicts brain age using lipid profiles from the prefrontal cortex. This region of the brain, located just behind the forehead, plays a key role in decision-making, memory, and emotional regulation.

The study titled “DoliClock: a lipid-based aging clock reveals accelerated aging in neurological disorders” analyzed post-mortem brain samples from individuals with and without neurological conditions such as autism, schizophrenia, and Down syndrome.

The researchers focused on a class of lipids called dolichols, which are involved in vital cellular processes such as protein transport and glycosylation. These lipids tend to accumulate in brain tissue as people age, making them promising markers for measuring biological aging.

Results: Lipids Reflect the Pace of Aging

The DoliClock model showed that dolichol levels in the brain increased gradually with age. This change became particularly noticeable around the age of 40, suggesting a shift in how the brain regulates lipid metabolism during midlife. In addition to dolichols, the researchers observed an increase in entropy, a measure of disorder in lipid composition, which also intensified around this age.

When applied to brain samples from individuals with neurological disorders, DoliClock revealed significant differences. Samples from people with autism, schizophrenia, and Down syndrome showed higher predicted biological ages compared to their actual ages. This finding indicates that these disorders are associated with accelerated brain aging. The results align with previous studies using other biological clocks but add a new layer of understanding by focusing on lipid metabolism.

The Impact: A New Window into Brain Aging

DoliClock represents an important step in aging research because it demonstrates how lipid profiles can serve as markers of biological age. Unlike genetic markers, which may not fully capture brain-specific changes, lipidomic data directly reflect the brain’s structure and metabolic state. Dolichols, in particular, emerged as strong indicators of aging and may also play a role in the development of neurological disorders. This lipid-based clock could help scientists better understand the brain aging process and identify individuals at risk of premature decline.

Future Perspectives and Conclusion

DoliClock opens new possibilities for studying the molecular basis of brain aging. Although the current study used post-mortem brain tissue, future research could adapt this approach for use with more accessible samples. Similar lipid signatures might eventually be detectable in blood or cerebrospinal fluid, offering a non-invasive way to monitor brain health. Such tools could support early diagnosis and help track the effectiveness of treatments designed to slow brain aging.

Investigating how interventions such as dietary changes or medications affect lipid-based aging markers could also lead to new strategies for promoting healthy brain aging, making DoliClock a promising foundation for further exploration in aging research and brain health.

Click here to read the full research paper published in Aging.

___

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

  • Follow Us