Trending With Impact: Therapeutic Strategy Improves Cell Senescence

In the cover paper of Aging (Aging-US) Volume 14, Issue 2, researchers discovered a potential therapeutic strategy to target senescent cells and combat aging and age-related diseases.

The Trending With Impact series highlights Aging (Aging-US) publications that attract higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at

Listen to an audio version of this article

Cellular senescence appears to be a phenomenon fundamentally ingrained within the aging process and linked to age-related diseases. Characterized broadly by permanent cessation of the cell cycle, cellular senescence may not be as permanent as once thought. 

Researchers from Incheon National University and Korea University conducted a new study exploring analogs of oxazoloquinoline and their potential to alleviate cellular senescence. Their trending research paper was published as the cover of Aging (Aging-US) Volume 14, Issue 2, and entitled, “Targeting regulation of ATP synthase 5 alpha/beta dimerization alleviates senescence.”


Adenosine triphosphate (ATP) is an energy-carrying molecule found in all living cells. In order to meet the energy demands of the cell, the primary function of the mitochondria is to produce ATP. The maintenance of mitochondrial metabolism is inseparably linked with the regulation of senescence. Therefore, dysfunctional mitochondria has been considered as both a target and the cause of senescence. In addition to a marked decrease in ATP production, senescent cells also increase the expression of inflammatory cytokines, including interleukin 33, or IL-33. The researchers believe that reducing IL-33 may be a possible intervention to reduce senescence in aging patients and age-related diseases.

“In this study, using in-house compound library containing 20 oxazoloquinoline analogs designed to IL-33 inhibitors [9], we aimed to identify compounds capable of ameliorating senescence.”

The researchers investigated 20 oxazoloquinoline analogs using in vitro assays of senescent human diploid fibroblasts and embryonic kidney cells. Efficacy of the candidate compounds was determined using a screening strategy to measure their capacity to increase cell number. Cell numbers were measured between zero and 20 days after compound exposure. The researchers also measured indicators including mitochondrial membrane potential, reactive oxygen species (ROS) levels and p21 expression. They found that the analog KB1541 led to the maximum cell number increase, the recovery of mitochondrial function and the alleviation of cellular senescence. The researchers suggest that KB1541 could be a promising therapeutic agent for use in aging-related diseases.

“The increase in mitochondrial cristae length by KB1541 could be explained by previous findings showing that the increase in ATP generation exerted beneficial effects in mitochondrial function including increases in calcium buffering capacity and decrease in overall ROS production [48].”


“Taken together, our study provides evidence that the fine-tuning of ATP synthase 5 alpha/beta dimerization by KB1541 can induce mitochondrial functional recovery, concomitant recovery of senescent phenotypes, rendering the use of KB1541 as a potentially advantageous therapeutic strategy in aging and age-related diseases.”

The authors acknowledged that further studies are needed to clarify the exact relationship between IL-33 and mitochondrial energy metabolism. Further studies are also needed to investigate whether other IL-33 inhibitors can modulate senescence by the mechanisms found in the study. This research provides valuable insight into the potential of oxazoloquinoline analogs as novel therapeutic agents for aging and age-related diseases. With further exploration, their findings could lead to new therapeutic strategies to combat aging.

“The role of IL-33 in senescence is not clearly elucidated, therefore discovery of a novel interacting partner will provide clues toward revealing its function.”

Click here to read the full research paper published by Aging (Aging-US).

AGING (AGING-US) VIDEOS: YouTube | LabTube |

Aging (Aging-US) is an open-access journal that publishes research papers bi-monthly in all fields of aging research. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Risks for Dementia and Mortality: Sleep Disturbance and Deficiency

Researchers used nationally representative data to examine the relationship between sleep disturbance and deficiency and their risk for incident dementia and all-cause mortality among older adults.

Person sleeping in bed and alarm clock in the foreground
Listen to an audio version of this article

Are serious health consequences looming for those with trouble sleeping? Based on a large sum of available research, the answer appears to be yes—poor sleep poses an increased risk of dementia and all-cause mortality. But what defines poor sleep? Conflicting results have been reported by researchers regarding the characteristics of sleep when examining incident dementia and all-cause mortality. For instance, one meta-analysis suggests that sleeping fewer than five hours (short sleep) and longer than nine hours (long sleep) per night is associated with greater risk of mortality. Another meta-analysis finds that only longer than nine hours is associated with greater risk of mortality.

“Research on sleep disturbance and deficiency and all-cause mortality therefore has shown conflicting results. Further, few studies have included a comprehensive set of sleep characteristics in a single examination of incident dementia and all-cause mortality.” 

From Brigham and Women’s Hospital, Harvard Medical School, and Boston College, based out of Massachusetts, United States, a team of researchers saw the need to address the gaps in this research and developed a new study. They organized a single examination of the relationships between a comprehensive set of sleep characteristics and incident dementia and all-cause mortality. This paper was entitled, “Examining sleep deficiency and disturbance and their risk for incident dementia and all-cause mortality in older adults across 5 years in the United States,” and published in Aging’s Volume 13, Issue 3 in February 2021.

The Study

The researchers collected baseline data from the National Health and Aging Trends Study (NHATS). The NHATS is a nationally-representative longitudinal study of Medicare beneficiaries (65 years and older) in the United States. The data were collected from a randomly selected subset of 2,812 participants from the NHATS population that were administered sleep questionnaires in 2013 and 2014.

“Participants with dementia at baseline (year 2013) were excluded (n = 202) for a sample of 2,812 with sleep data in either 2013 or 2014.”

The sleep characteristics measured from the questionnaire were: sleep duration, sleep latency, difficulty maintaining alertness, sleep quality, napping frequency, and snoring. First, participants rated their memory and performed a memory-related activity to assess their cognitive capacity and screen for incident dementia. Body weight was reported by participants annually, and diagnosis of heart attack, heart disease, hypertension, arthritis, diabetes, stroke, and cancer were also self-reported. Annual interviews were conducted to record instances of participant mortality. The researchers used Cox proportional hazards modeling and controlled for confounders to examine each sleep characteristic and outcome.


“Overall, our findings show a strong relationship between several sleep disturbance and deficiency variables and incident dementia over time.”

In the results adjusted for confounders, the team found that longer time to fall asleep and shorter sleep duration predicted incident dementia. They also found that short sleep duration, difficulty maintaining alertness, napping, and poor sleep quality predicted all-cause mortality. Given that short sleep duration was a strong predictor for both incident dementia and all-cause mortality, the researchers suggest that this may be the most important sleep characteristic related to adverse outcomes among older adults. 

“The association observed in our study between short sleep (5 hours or less) and incident dementia screening may be understood via the research drawing upon animal models to demonstrate brain toxin removal during sleep [24].”

Another fascinating finding from this study was the difference between unadjusted and adjusted results for long sleep. As mentioned, previous studies have shown that long sleep is associated with both incident dementia and all-cause mortality. However, after the researchers adjusted for confounders, such as age and chronic conditions, the association between long sleep and incident dementia and all-cause mortality disappeared. The relationship between short sleep and both incident dementia and all-cause mortality remained significant even after full adjustment. These findings stand in contrast to the meta-analyses initially mentioned that have found associations between both short and long sleep and all-cause mortality in adults. The researchers suggest the cause may be that long sleep is a reflection of underlying disease.

“The most parsimonious explanation for the disappearance of the effect of long sleep on dementia and mortality in adjusted models is that the deleterious impact of long sleep is a reflection of underlying disease.”


The researchers confirm that addressing the sleep disturbance and deficiency variables in this study may have a positive impact on risk for incident dementia and all-cause mortality among older adults.

“Also, future research may consider the development of novel behavioral interventions to improve sleep among older adults.”

Click here to read the full study, published on

Aging is an online open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Pressurized Oxygen Therapy Can Reverse Mechanisms of Aging

For the first time, researchers demonstrate that hyperbaric oxygen therapy can reverse the mechanisms that mark the aging process.

Oxygen molecules and erythrocytes floating in a vessel in the blood stream.
Oxygen molecules and erythrocytes floating in a vessel in the blood stream.
Listen to an audio version of this article

Aging is the progressive loss of physiological integrity, which results in impaired functionality and increased susceptibility to diseases, and ultimately death. For the first time, researchers collaborated in an in vivo study to observe the effects of hyperbaric oxygen therapy on cellular mechanisms to reverse aging.

Researchers based out of Israel from Shamir Medical Center, Tel-Aviv University, and Bar Ilan University published a groundbreaking new paper titled, “Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells : a prospective trial,” in the open access journal, Aging. The importance of this study hinges on understanding the mechanisms of aging that were evaluated by the researchers.

“At the cellular level, two key hallmarks of the aging process include telomere length (TL) shortening and cellular senescence.”

Telomere Length

Telomeres (TLs) function to protect chromosomes from DNA damage and are located at the end of the chromosome. In each instance of cell division, the telomeres shorten due to an inherent inability to fully replicate the DNA strand. Given that cells can only replicate a finite number of times before they can no longer engage in mitosis, the shortening of telomeres has been shown in adults to lead to increased rates of mortality.

Researchers in this study also provide examples of studies that are finding a number of pharmacological agents capable of reducing the shortening rate of telomeres.

“Shortened TLs can be a direct inherited trait, but several environmental factors have also been associated with shortening TL, including stress, lack of physical endurance activity, excess body mass index, smoking, chronic inflammation, vitamins deficiency, and oxidative stress [2, 8, 9].”

Cellular Senescence

The other hallmark mechanism of the aging process is cellular senescence. Previously, senescent cells have been viewed as mechanisms that protect the body against cancer through cell-cycle arrest, however, recent discoveries have found that they also have a role in processes such as development, tissue repair, aging, and age-related disorders. The phase of senescence can be triggered by telomere shortening and other non-telomeric DNA damage.

“The primary purpose of senescence is to prevent propagation of damaged cells by triggering their elimination via the immune system. The accumulation of senescent cells with aging reflects either an increase in the generation of these cells and/or a decrease in their clearance, which in turn aggravates the damage and contributes to aging [1].”

Oxidative Stress

In this well-written paper, the researchers introduce the topic by citing numerous interventional studies measuring the association between telomere length and lifestyle modifications. Studies include the measuring of diet, supplements, physical activity, stress management, and social support. However, the team found that the most common mechanism associated with telomere shortening is oxidative stress.

“Oxidative stress can occur from imbalances between the production of reactive oxygen species (ROS) and cellular scavengers.”

Previous studies indicate that telomeres are highly sensitive to oxidative DNA damage which occurs due to an excess of reactive oxygen species (ROS), or molecular oxygen by-products. The excess formation of these ROS occurs through the sequential reduction of oxygen via the addition of electrons and a lack of scavenger cells to digest excess microorganisms. This leads to the shortening of telomeres.

Hyperbaric Oxygen Therapy

Hyperbaric oxygen therapy (HBOT) has been observed to stimulate brain function and increase cognitive ability in previous studies. HBOT involves patients breathing in 100% oxygen in a pressurized chamber on a repeated basis. Being in this type of environment increases the amount of oxygen that is dissolved in the blood and tissue. Increasing oxygen levels in the body using pure oxygen on a daily basis can induce the hormesis phenomenon. This eustress type of therapy has been shown to have beneficial and positive effects on the body and mind.

“Single exposures [to HBOT] increase ROS generation acutely, triggering the antioxidant response, and with repeated exposures, the response becomes protective [13, 18].”

The Study

This study was designed to evaluate the effects of HBOT on the telomeres and concentrations of senescent cells in aging/healthy adults. Thirty-five participants living independently at 64+ years of age received HBOT exposures daily, over the course of 60 days.

Researchers collected whole blood samples prior to intervention (baseline), at the 30th and 60th session, and 1-2 weeks after the last HBOT session. They assessed the telomere lengths and senescence of peripheral blood mononuclear cells (PBMCs) in each participant’s blood sample.

Figure 3. Senescent cell changes with HBOT.
Figure 3. Senescent cell changes with HBOT.

“In this study, for the first time in humans, it was found that repeated daily HBOT sessions can increase PBMC telomere length by more than 20% in an aging population, with B cells having the most striking change. In addition, HBOT decreased the number of senescent cells by 10-37%, with T helper senescent cells being the most affected.”


Following HBOT, telomere lengths increased by over 20% in T helper, T cytotoxic, natural killer, and B cells. There was also a significant decrease in the number of senescent T cytotoxic and T helper cells observed in the participant blood samples, allowing for new healthy cells to regenerate.

“In conclusion, the study indicates that HBOT may induce significant senolytic effects including significantly increasing telomere length and clearance of senescent cells in the aging populations.”

Click here to read the full scientific paper, published in Aging.

Learn more about Hyperbaric Oxygen Therapy (HBOT)

Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues and other researchers, far and wide.

  • Follow Us