The Impact of Age on Melanoma: Insights from Recent Research

In a new editorial, researchers delve into the intricate dynamics of melanoma and aim to illuminate differences in age-related incidence, prognosis and treatment.

In the realm of cancer research, one persistent trend has emerged — the incidence of invasive melanoma rises steadily with advancing age. While this insidious disease remains rare in children and adolescents, it progressively asserts its presence as individuals grow older. The connection between age and melanoma incidence persists around the world, albeit with varying rates in different countries. 

Australia has the highest melanoma rates in the world. According to the Melanoma Institute Australia, every 30 minutes an Australian is diagnosed with melanoma and every 6 hours an Australian dies from it. Thankfully, research is making a difference. In the last decade, the 5-year overall survival rate for advanced melanoma has increased from less than 10% to more than 50%. In 2011, melanoma was Australia’s 7th most deadly cancer. In 2021, melanoma was Australia’s 11th most deadly cancer.

Figure 1. Melanoma incidence (A) and mortality (B) according to age [2].

In a new editorial paper, researchers John F. Thompson and Gabrielle J. Williams from the Melanoma Institute Australia at The University of Sydney discuss the intricacies of how age influences different varieties of melanoma incidence, prognosis and treatment. On August 17, 2023, their editorial was published in Aging’s Volume 15, Issue 16, entitled, “The effect of age on melanoma incidence and prognosis.”

Understanding Melanoma Subtypes

The researchers point out that while invasive melanoma is at the forefront of discussion, non-invasive “melanoma in situ” (MIS) follows a similar age-related pattern of increase. MIS, often exemplified by lentigo maligna (LM), results from chronic, accumulated exposure to ultraviolet light. The progression from LM to invasive lentigo maligna melanoma (LMM) occurs at an estimated rate of 3.5% per year, with an average transition period of 28.3 years.

Older patients are more prone to another unique subtype known as desmoplastic melanoma, linked to chronic sun exposure and frequently affects the head or neck. While desmoplastic melanomas have a somewhat higher local recurrence rate, the majority of invasive melanomas in elderly patients exhibit features associated with poorer prognosis, including ulceration, higher mitotic rates and increased Breslow thickness.

Melanoma Biopsies & Treatment Options

Patients with high-risk primary melanomas are often recommended for a sentinel lymph node biopsy (SLNB) to assess the presence of metastatic melanoma cells in regional lymph nodes—a pivotal prognostic factor. Strikingly, the likelihood of a positive SLNB result decreases with age. However, as age advances, the risk of death due to melanoma’s spread to distant sites increases, leaving researchers grappling with the mysteries of why these phenomena occur.

Current treatments for SLN-positive melanoma patients include immunotherapy and targeted therapy. Immunotherapy agents like ipilimumab, pembrolizumab and nivolumab have shown promise in treating melanoma. While initial clinical trials excluded the very young and elderly, subsequent non-randomized studies have revealed that these agents are similarly effective in older patients, with comparable adverse event profiles. However, the efficacy of these therapies in children and adolescents remains uncertain.

Targeted therapies focusing on BRAF mutations, including vemurafenib and dabrafenib, have been employed, particularly in younger patients who exhibit a higher prevalence of BRAF positivity. Response rates are significant but often followed by resistance. Interestingly, these therapies appear to exhibit similar efficacy and safety profiles in older patients, offering a glimmer of hope for this demographic.

In older melanoma patients with brain metastases, radiation therapy has historically played a crucial role, offering alternatives to surgical excision. Studies have revealed that both whole-brain radiotherapy and stereotactic radiotherapy are equally effective in patients aged 70-90 as in younger groups. With the advent of immunotherapy and targeted therapies, combining localized radiation with systemic treatment is becoming an option, particularly in older patients, offering the potential for similar benefits as seen in younger cohorts.

Conclusions & Future Directions

The data presented in this editorial underscore a stark reality — melanoma’s impact escalates with age. Patterns of the disease differ significantly in older age groups, with increasing rates of metastasis and death. However, standard forms of melanoma management, including surgery, radiation therapy and newer systemic therapies, have proven to be as effective and safe in older patients as in their younger counterparts. This knowledge serves as a beacon of hope, offering solace and potential avenues for treatment in the face of this disease.

In closing, the critical role of research and continued investigation cannot be overstated. Further exploration of age-related nuances in melanoma will undoubtedly uncover new insights and lead to more tailored and effective treatments for all patients, regardless of their age.

Click here to read the full editorial published in Aging.

Aging is an open-access, traditional, peer-reviewed journal that has published high-impact papers in all fields of aging research since 2009. All papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

Dr. Mikhail Blagosklonny on Rapamycin Longevity Series

The world’s leading Rapamycin researcher, Dr. Mikhail Blagosklonny, has a long background in cancer research and one important discovery he made around 2000 was that Rapamycin slowed down senescent cancer cells in different ways. After that step-by-step, his interest in the longevity field increased and he developed the very interesting hyperfunction theory of aging.

He has made a huge contribution in moving the Rapamycin longevity field forward and his research papers have impacted many people. For example, the Rapamycin physician Alan Green who – thanks to these papers – took the decision in 2017 to start prescribing Rapamycin off label. Today, Alan Green has the biggest clinical experience in the area with more than 1,200 patients. A lot of other physicians have after that also taken these steps and one of those, for example, is physician Peter Attia.

Interview Table of Contents:

  • 02:32 Current situation and mission
  • 04:07 Why did Rapamycin not prevent his cancer?
  • 06:33 He develops a new type of cancer treatment
  • 08:32 Hyperfunction theory of age-related diseases
  • 10:38 mTOR drives age-related diseases
  • 13:00 Hyperfunction theory and the car analogy
  • 17:20 Difference between new and old version of hyperfunction theory
  • 19:58 Prediction based on hyperfunction theory
  • 21:38 Rapamycin seems to work at any age
  • 23:55 Rapamycin will not make you immortal
  • 26:21 Rapamycin delays lung cancer in mice
  • 27:44 Hyperfunction theory and hormesis
  • 29:13 Rapamycin combination with fasting or calorie restriction
  • 30:33 Rapamycin combination with Acarbose or low carb diet
  • 31:40 Rapamycin combination with exercise
  • 33:04 Exercise and longevity effect
  • 36:10 mTOR sweet spot
  • 38:44 Why do centenarians live a long life?
  • 40:36 Theory of accumulation of molecular damage
  • 44:04 Hyperfunction theory was initially rejected
  • 47:47 Rapamycin research that is missing
  • 51:44 Rapamycin and bacterial infection
  • 53:30 Rapamycin side effect on longevity dose regime
  • 55:50 Rapamycin and pseudo-diabetes
  • 58:51 Rapamycin combination of Acarbose or low carb diet
  • 1:00:09 Rapamycin and increase in lipids
  • 1:02:19 mTOR, mTORC1 and mTORC2
  • 1:05:22 Mikhail’s self-experimentation with Rapamycin
  • 1:10:41 Rapamycin and traditional medical care
  • 1:11:13 Rapamycin and unacceptable side effects
  • 1:14:26 Rapamycin and combinations to avoid
  • 1:16:55 Rapamycin and high protein intake
  • 1:18:08 Best time to start taking Rapamycin
  • 1:21:00 Does Rapamycin prevent cancer or not?
  • 1:23:52 Autophagy is a double-edged sword
  • 1:26:51 Important insight from his cancer
  • 1:28:38 Rapamycin rebound effect
  • 1:30:24 Difference between theory and practice
  • 1:32:45 Mikhail’s cancer and cancer treatment
  • 1:37:36 Rapamycin and danger

Dr. Blagosklonny’s Links:

Rapamycin resources:

Disclaimer from host Krister Kauppi:

The podcast is for general information and educational purposes only and is not medical advice for you or others. The use of information and materials linked to the podcast is at the users own risk. Always consult your physician with anything you do regarding your health or medical condition.

Dry Eyes? It May be Immune Infiltration in Aging Lacrimal Glands

In a new editorial, researchers from Baylor College of Medicine artfully discuss the immune system’s role in dry eye disease. 

The lacrimal gland, found in the upper outer part of the eye’s hollow area, is an important gland that makes tears to protect the eye from infections. It’s split into two parts: one near the inside of the eyelid that can be seen when the eyelid is flipped, and another part with ducts lower in the eye that connects to its counterpart. In their fully functioning status, these ducts release fluid onto the surface of the eye. As humans age (especially women), the lacrimal gland gradually becomes infiltrated by aberrant immune cells and can ultimately lead to an uncomfortable condition known as dry eye disease.

“Burning and redness in the eyes, grittiness and blurry vision make life miserable and currently, eye drops with a variety of lubricant components and in the most severe cases, immunosuppressors, are the only therapies approved for this disease.”

In a well-written new editorial paper, researchers Claudia M. Trujillo-Vargas and Cintia S. de Paiva from the Department of Ophthalmology at Baylor College of Medicine artfully discuss their recent studies which shed light on the immune system’s role in dry eye disease. On August 11, 2023, their editorial was published in Aging’s Volume 15, Issue 15, entitled, “Our search of immune invaders in the aged lacrimal gland.”

Editorial Summary

The authors write that their research group has been dedicated to investigating the changes that occur in the lacrimal gland due to aging and focus on immunopathological alterations. Due to limited human samples, their studies have centered on understanding the infiltration of lymphocytes, specifically B and T cells, in aged mice’s lacrimal glands. This infiltration has been linked to increased dysfunction of the ocular surface. 

“In the search of mechanisms that can counteract the effects of the overwhelming immune infiltration, we started characterizing one of the main players of immune tolerance, the thymic-derived T regulatory cells (Tregs).”

The researchers and their team have a particular interest in thymic-derived T regulatory cells (Tregs), which play a key role in immune tolerance. Paradoxically, in the aged glands, these Tregs, while exhibiting markers for their suppressive function, display heightened differentiation, infiltrate the tissue, produce inflammatory cytokines, and demonstrate impaired suppressive capabilities. When transferred to immunodeficient recipients, these dysfunctional Tregs replicate lacrimal gland pathology. 

Aged lacrimal glands contain highly differentiated CD4+ T cells of the Th1 and Th17 phenotypes, which exhibit exhaustion and immunopathological features. This environment hampers Tregs’ ability to suppress immune responses. There’s also an increase in naïve CD4+ T cells and IgD+ B cells, suggesting a unique environment for the recruitment of inexperienced immune cells in the gland.

Ectopic lymphoid structures, resembling those found in aged tissues, are observed in the lacrimal gland, potentially contributing to immune dysregulation. Despite the concept of immune cells being unwelcome invaders, the lacrimal gland relies on immune cell influx for surveillance purposes, as it is highly vascularized. Nonetheless, with age, immune cell infiltration intensifies, accompanied by fibrosis, duct issues and gland atrophy. Interestingly, antigen-presenting cells diminish, adding to the peculiar immune environment.

In their running analogy to the movie “Men in Black,” the researchers explain that they are seeking effective therapies, akin to the “noisy crickets,” to combat this pathological immune infiltration. They’re investigating differentially expressed genes in the aged gland, focusing on Tregs expressing Il1r2, CD81 and Tbx21, and B cells showing increased CD79a/b expression. The researchers are also exploring the gut microbiota’s role in ocular barrier disruption and dry eye disease in mice. This could lead to more cost-effective microbial treatments for dry eye disease in humans. However, the effectiveness of these therapies in impeding lymphocyte infiltration in aged lacrimal glands remains uncertain.

Conclusions & Future Directions

In conclusion, their editorial provides valuable insights into the role of the lacrimal gland in the immune system and how it could be used to develop new treatments for dry eyes and other age-related eye diseases. The authors’ research has shown that aged lacrimal glands are infiltrated not only by highly differentiated B but also T cells. This landscape is associated with increased ocular surface dysfunction. The authors suggest that this information could be used to develop new therapies for age-related eye diseases.

Considering the rising pollution and screen dependence in the past decade, the researchers predict an increase in severely damaged lacrimal glands in the elderly. This environment could foster the development of ectopic lymphoid structures, potentially leading to a higher prevalence of dry eye disease. As such, interventions will be required to mitigate the immune damage to the lacrimal gland. Ultimately, protecting the lacrimal glands from the consequences of immune dysregulation is a critical goal.

“Unquestionably, more than ‘fancy sunglasses’ would be needed to hinder the ‘carbonizing’ immune damage in the gland. Thus, Yes! We certainly need to protect our lacrimal glands from the scum of our own immune universe!”

Click here to read the full editorial published in Aging.

Aging is an open-access, traditional, peer-reviewed journal that has published high-impact papers in all fields of aging research since 2009. All papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

Navigating the Frailty Factor in Atrial Fibrillation Management

In a new editorial, researchers discuss the impact of frailty on clinical decision-making in managing patients with atrial fibrillation and the prescription of oral anticoagulants.

Atrial fibrillation (AF) is a type of heart arrhythmia that occurs when the ​​heart’s electrical signals become irregular. This condition can increase the risk of stroke and heart failure, and becomes more common in older adults. Frailty is another condition that coincides with aging. Frailty encompasses an accumulation of deficits and can be defined as decreased physical function and resilience. For a significant proportion of the elderly population, both of these conditions coexist. This convergence can lead to additional health issues and further complicate the clinical landscape for aging individuals. 

“The impact of frailty on outcomes has not been previously well characterized in populations with AF.”

Studies on frailty and its overall impact on patients with AF are needed. In a new editorial paper, researchers Stephanie L. Harrison, Søren P. Johnsen and Gregory Y.H. Lip from Liverpool John Moores University and Liverpool Heart and Chest Hospital discuss some of the existing studies assessing frailty and AF in terms of patient outcomes and clinical decision-making. The researchers also discuss recommendations for clinical management of AF and frailty patients and include suggestions for future studies. On July 19, 2023, their editorial was published in Aging’s Volume 15, Issue 14, entitled, “The impact of frailty on the management of atrial fibrillation.”

Oral Anticoagulants for AF With Frailty: Yay or Nay?

Oral anticoagulants (OACs) are often prescribed to AF patients, as OACs aid in reducing blood clots and the risk of stroke. However, frailty patients are more susceptible to falls and therefore, more susceptible to bleeding risk. The prevention of blood clots is less than ideal for wound healing and can lead to impaired tissue repair, increased risk of infection and prolonged recovery times. Has frailty status impacted clinical decision-making when it comes to the prescription of OACs for AF patients?

“The impact of frailty on clinical decision making for managing patients with AF such as the prescription of oral anticoagulants (OACs) is unclear.”

In an effort to begin answering this question, the authors of this editorial reviewed a number of studies on frailty and AF. Some cross-sectional analyses revealed a significant association between frailty status and the prescription of OACs, while other studies found no such association. The authors explain that these dueling results may be due to differences in study populations, the tools/methods used to assess frailty and the timing of when the studies were conducted. The prescription of anticoagulants increased when a new class of OACs was introduced to the market.

Non-vitamin K antagonist oral anticoagulants (NOACs) were first introduced in the early 2010s. They are a class of drugs with significant advantages over traditional OACs, including less off-target effects, more predictable pharmacokinetics and a more targeted mechanism of action — making them a safer option for use in combination with other drugs. Notably, certain NOACs have specific reversal agents available, which can be used to rapidly reverse their anticoagulant effect in case of emergency. International guidelines recommended their use as a first-line treatment to reduce the risk of stroke in AF patients.

“Frailty alone should not be reason to withhold oral anticoagulation in patients with AF. In patients with frailty, the benefits of oral anticoagulation outweigh the small absolute risk of bleeding [6].”

Conclusions & Future Directions

The authors close the editorial by stating that additional research is needed to understand how frailty impacts clinical decision-making for the management of atrial fibrillation. They strongly suggest that frailty not be the sole reason AF patients are not prescribed potentially life-saving oral anticoagulants. There are more sensitive options available today, such as NOACs, that can potentially mitigate the drawbacks of anticoagulants for people with frailty. The authors also emphasize that pre-frailty assessments should be conducted for AF patients in order to reduce treatment risk and optimize the management of this condition.

“Assessment of pre-frailty in patients with AF and the development of strategies to address potentially modifiable components of pre-frailty to reduce the risk of frailty progression could have important implications to optimize care.”

Click here to read the full editorial published in Aging.

Aging is an open-access, peer-reviewed journal that has been publishing high-impact papers in all fields of aging research since 2009. These papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

Exploring the Impact of Cognitive Reserve on Cognitive Resilience

In a new editorial, researchers discuss their recent study investigating the effect that cognitive reserve has on brain integrity and cognitive resilience.

Why do some individuals maintain cognitive abilities throughout their lifespan and others do not? The better question may be: How can certain individuals preserve their cognitive abilities and delay the onset of dementia despite the presence of significant neuropathologies that would otherwise suggest cognitive decline? This question remains unanswered.

“What contributes to this ‘resilience’ [3], that is why some successfully cope with progressive neuropathology while others cannot tolerate the same level of neurodegeneration, is not fully understood.”

This unanswered question has driven researchers to consider the idea of “cognitive reserve.” The rather new concept of cognitive reserve suggests that certain factors, such as engaging in education, mental stimulation and challenging activities, can create a buffer against cognitive decline and delay the onset of cognitive impairment or dementia. Researchers continue to study cognitive reserve to better understand its mechanisms and potential implications for maintaining brain health and designing effective interventions.

In a new editorial paper, researchers Monica E. Nelson, Ross Andel and Jakub Hort from the University of South Florida’s​​ School of Aging Studies discussed the outcomes, lessons and future implications of their previous 2022 study. The team examined the influence of cognitive reserve proxies on the relationship between brain integrity and cognition. On July 14, 2023, their editorial was published in Aging’s Volume 15, Issue 13, entitled, “Cognitive reserve, neuropathology, and progression towards Alzheimer’s disease.”

Cognitive Reserve’s Effect on Brain Integrity and Cognitive Performance

In their 2022 study, a total 570 older adult participants were assessed from the Czech Brain Aging Study (a longitudinal cohort study from two memory clinics in the Czech Republic). Most of the participants (n = 457) were without dementia (including those with subjective cognitive decline and amnestic mild cognitive impairment) and the remaining participants were with dementia syndrome (n = 113). The researchers examined the influence of education and occupational position (cognitive reserve proxies) on the relationship between the participants’ hippocampal or total gray matter volume and cognitive performance. Measurements included brain volume, executive control, language, memory, attention/working memory, and visuospatial skills.

“[…] we assessed the inter-link between cognitive reserve, neuropathology, and cognitive functioning among participants with subjective cognitive decline, mild cognitive impairment, and dementia.”

The team found that the association between brain volume and cognitive performance varies based on cognitive reserve. Findings showed that a higher education and occupational position magnified the associations between brain volume and cognitive performance in participants without dementia. In participants with dementia, higher education decreased the associations between brain volume and visuospatial skills. Overall, the results showed that cognitive reserve affects the relationship between brain volume and cognitive performance, with greater cognitive reserve related to a stronger link before dementia diagnosis and a weaker link after.

Future Directions 

In their subsequent editorial, the researchers were forthcoming about limitations of this study and addressed key opportunities for future studies. Limitations were identified as the use of a relatively homogeneous sample population, the absence of the use of biomarkers in diagnosis and the cross sectional design. Cross-sectional studies may not fully capture disease-related changes in neuropathology and could present a distorted view of the linkages between cognitive reserve, neuropathology and cognitive outcomes. The authors advocate for conducting longitudinal studies to track how cognitive reserve operates in individuals as they progress from normal to dementia. 

Additionally, the team wrote that future studies would be improved by investigating a range of Alzheimer’s disease biomarkers, such as beta-amyloid and tau, individually and together, to understand how they influence the associations between cognitive reserve, brain health and cognition. Different biomarkers may lead to varied results in how cognitive reserve moderates these associations. And finally, future studies should also assess older adults across the cognitive spectrum to determine when cognitive reserve is protective against brain health decline and neuropathology, and when its effectiveness diminishes. Some researchers have suggested a U-shaped relationship to explain mixed findings in different studies.

“Even though our study represents one of the first to come from Eastern Europe [4], future work should be conducted in additional populations, representing geographic, racial, and socioeconomic diversity.”

Implications

The potential impact of this research may be important, as it could lead to the development of effective interventions and strategies to preserve cognitive abilities and delay the onset of dementia. By gaining a deeper understanding of cognitive reserve and its mechanisms, we can take steps to promote brain health throughout life, potentially reducing the burden of dementia on individuals, communities and society overall.

As research continues in this field, it is clear that cognitive reserve holds great promise for unlocking the secrets of cognitive resilience and paving the way for healthier aging and improved quality of life for older adults. By addressing the limitations of current studies and exploring new avenues of investigation, we move closer to finding answers to the vital question of how some individuals maintain their cognitive abilities despite the presence of significant neuropathologies, while others do not.

“By assessing cognitive reserve in distinct populations, a more complete understanding of how cognitive reserve relates to neuropathology and cognition and whether these associations may be affected by distinct macro-level contextual differences among populations can be established. Disentangling these complex relationships may provide a critical step in reducing the impact of dementia on society.”

Click here to read the full editorial published by Aging.

Aging is an open-access, peer-reviewed journal that has been publishing high-impact papers in all fields of aging research since 2009. These papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

Can a Leaky Gut Lead to Alzheimer’s Disease?

In a new editorial, researchers explore how a leaky gut can lead to Alzheimer’s disease using the Seed and Soil Model of Neurocognitive Disorders to explain.

New research continues to illuminate the far-reaching implications of the gut microbiome and its crucial role in our overall health. The term “gut dysbiosis” refers to an imbalance of healthy and unhealthy microbes in the gastrointestinal tract. Repercussions of gut dysbiosis are not only limited to innocuous discomfort—it can lead to immune dysregulation and trigger a cascade of various disease states. 

In a new editorial paper, researchers Chun-Che Hung, Kristi M. Crowe-White and Ian M. McDonough from Chang Gung University and The University of Alabama discuss the relationship between gut dysbiosis and neurocognitive disorders such as Alzheimer’s disease (AD). Their editorial was published in Aging’s Volume 15, Issue 12, on June 19, 2023, entitled, “A seed and soil model of gut dysbiosis in Alzheimer’s disease.”

“[…] recent research has demonstrated a crucial role of gut microbiota in the etiopathogenesis of AD [Alzheimer’s disease] that offers a new window into possible origins and consequences of AD through interactions between gut microbiota and the central nervous system, known as the ‘microbiota-gutbrain axis’ [1].”

The Seed and Soil Model of Neurocognitive Disorders

The “Seed and Soil Model” in biology was first used in an attempt to describe why some individuals who are predisposed to developing neurocognitive disorders do not ever develop them. As the researchers wrote in their editorial, the “seeds” in this analogy represent genetic predispositions or a family history of a particular disease state. The “soil” represents the external environment that either enables or disables the expression of these seeds. This external environment can be influenced by behavioral and/or lifestyle factors. Although this model did not originally include the microbiota-gut-brain axis, the authors of this editorial are now applying it.

Interestingly, the researchers here have related the “leaky gut” phenomenon of gut dysbiosis to Alzheimer’s disease (AD). A leaky gut, plainly described as increased intestinal permeability, is a condition where the lining of the intestine becomes more porous. This allows larger molecules and toxins to pass through into the bloodstream—opening the door to potential inflammation and various health problems. 

Metabolites involved with gut leakiness have previously been linked to increased permeability of the blood-brain barrier (BBB). The opening of the BBB allows bacterial endotoxins to travel from the gut to the brain environment. This can increase inflammation within the system. The authors propose that gut leakiness, through the Seed and Soil Model, may explain why some people predisposed to AD realize the disease, while those without gut dysbiosis may not.

“According to the Seed and Soil Model of Neurocognitive Disorders, this translocation would create a toxic microenvironment in the brain vulnerable to pathogenesis, especially for those with a genetic predisposition to AD.”

Conclusion

“According to the Seed and Soil Model of Neurocognitive Disorders, environmental and behavioral patterns can influence the balance of neuroprotection vs. toxicity of the brain’s micro-environment.”

In sum, emerging research continues to shed light on the significance of the gut microbiome and its connection to our overall health. The editorial by Hung, Crowe-White and McDonough explores the relationship between gut dysbiosis and neurocognitive disorders, particularly Alzheimer’s disease, through the lens of the Seed and Soil Model of Neurocognitive Disorders. By considering the impact of leaky gut and the translocation of bacterial endotoxins on the brain, the authors propose that gut dysbiosis may contribute to the pathogenesis of AD, particularly in individuals with a genetic predisposition. This perspective opens new avenues for understanding the complex interactions within the microbiota-gut-brain axis and provides insights into ways to potentially stave off cognitive decline with diet and lifestyle interventions.

“Here, we extend the model to better understand how the microbiota-gut-brain axis may play a causal role in the development of AD. However, more research is needed to test additional hypotheses of the model.”

Click here to read the full research paper published by Aging.

Aging is an open-access, peer-reviewed journal that has been publishing high-impact papers in all fields of aging research since 2009. These papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

How Telomere Dysfunction Affects Female Fertility (A Mouse Study)

In a new study, researchers aimed to reveal a link between telomere dysfunction, ovarian aging and infertility using a mouse model of accelerated-reproductive senescence.

Telomeres are the protective caps at the ends of chromosomes that prevent DNA damage and maintain genomic stability. However, telomeres shorten with each cell division and eventually reach a critical length that triggers cellular senescence or death. Telomere length (TL) and telomerase activity (TA), the enzyme that replenishes telomeric repeats, are influenced by genetic and environmental factors and vary among tissues and individuals.

“Telomere attrition has been identified as one of the molecular determinants of aging [7].”

Telomere dysfunction has been implicated in various age-related diseases, including infertility. Ovarian aging is the main cause of infertility in women, as it leads to a decline in both the quantity and quality of oocytes. Previous studies have shown that TL and TA are reduced in oocytes and granulosa cells of women with diminished ovarian reserve or poor response to ovarian stimulation. Moreover, TL and TA have been associated with ovarian reserve markers and pregnancy outcomes in assisted reproductive technologies.

To better understand the molecular mechanisms underlying ovarian aging and infertility, researchers Alba M. Polonio, Marta Medrano, Lucía Chico-Sordo, Isabel Córdova-Oriz, Mauro Cozzolino, José Montans, Sonia Herraiz, Emre Seli, Antonio Pellicer, Juan A. García-Velasco, and Elisa Varela from The Health Research Institute La Fe (IIS La Fe), IVIRMA Rome, New Jersey and Madrid, Centro Anatomopatológico, Yale School of Medicine, University of Valencia, and Rey Juan Carlos University conducted a new study using a mouse model of accelerated aging: the Senescence-Accelerated Mouse Prone 8 (SAMP8). On May 23, 2023, their research paper was published in Aging’s Volume 15, Issue 11, entitled, “Impaired telomere pathway and fertility in Senescence-Accelerated Mice Prone 8 females with reproductive senescence.”

The Study

The SAMP8 mouse model, which has previously been suggested as an Alzheimer’s disease model of aging, also exhibits a shortened estrous cycle, elevated follicle-stimulating hormone (FSH) levels, and reduced fertility in females at just seven months of age. SAMP8 mice have a shorter lifespan compared to senescence-accelerated mouse resistant 1 (SAMR1) mice. SAMR1 mice do not exhibit reproductive senescence. Thus, the researchers deemed the SAMR1 mouse model an appropriate control group to study the SAMP8 mouse model as a model of ovarian aging and infertility. 

“In the current study, we sought to investigate whether the SAMP8 mice, which show accelerated-reproductive senescence, have alterations in their telomere pathway. This question has not yet been explored in relation to reproduction in this model.”

In this study, the team compared the TL and TA in blood and ovary samples from the SAMP8 female mice at seven months of age (when they show signs of reproductive senescence) with age-matched control SAMR1 mice. They also evaluated the ovarian follicle development, the expression of telomerase subunits (TERT and TERC), and the reproductive outcomes after ovarian stimulation in both groups of mice. In sum, the researchers measured survival rates (in male and female mice), alteration in the telomere pathway at seven months of age, TERT and TERC expression levels, TA on the TL of granulosa cells in developing follicles, and impairment/alterations in the telomere pathway in oogenesis and embryo development.

The results revealed that SAMP8 females had a reduced median lifespan compared to SAMP8 males and SAMR1 males and females. In blood, SAMP8 females had lower mean TL and higher accumulation of short telomeres than the other mice. In ovary, SAMP8 females had lower TA and TERT expression. Furthermore, SAMP8 females had fewer primordial, primary, secondary, and antral follicles than control females, indicating a diminished ovarian reserve. After ovarian stimulation, SAMP8 females had a lower number of oocytes than controls of the same age. Their results suggested that oogenesis and embryo development is impaired in SAMP8 mice at seven months compared to age-matched controls, and this coincides with alterations in the telomere pathway.

Conclusions

“Thus, SAMP8 females represent a bona fide model for the analysis of fertility, not only because it shows similar phenotype to middle-aged women as stated earlier [43], but also because the alterations in the telomere pathway are found in women with fertility disorders [37, 38, 40, 41] and this pathway links reproduction with longevity.”

The researchers concluded that SAMP8 females have impaired telomere pathway and fertility, reflecting signs of reproductive senescence described in middle-aged women. They suggested that the SAMP8 model could be useful in studying the role of telomere dysfunction in ovarian aging and infertility. In addition, this mouse model could be used to test potential therapeutic interventions to improve female reproductive health.

“Understanding the molecular pathways underlying aging and fertility, provides a basis for further studies focused on several topics. First, the analysis of embryo alterations, which can be better assessed in mice than in humans. Second, how reproductive lifespan improvement may ameliorate elderly health. And third, the mechanisms underlying follicle recruitment and development, which are not completely known.”

Click here to read the full research paper published by Aging.

Aging is an open-access, peer-reviewed journal that has been publishing high-impact papers in all fields of aging research since 2009. These papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

The Impact of Age, Sex, CMV, and Smoking on Circulating Immune Cells

In a new study, researchers investigated associations between circulating immune cells and age, sex, CMV infection, and smoking.

The Impact of Age, Sex, CMV, and Smoking on Circulating Immune Cells

As we age, our immune system undergoes changes that influence our susceptibility to various diseases. Certain factors, such as smoking, viruses, age, and sex can have differential impacts on our various circulating immune cells. How changes to these immune cells contribute to cardiovascular disease and other age-related diseases is not yet fully understood. More research is needed to fully understand the underlying mechanisms and implications. 

“Understanding the composition of circulating immune cells with aging and the underlying biologic mechanisms driving aging may provide molecular targets to slow the aging process and reduce age-related disease.”

In a new study, researchers Yuan Fang, Margaret F. Doyle, Jiachen Chen, Jesse Mez, Claudia L. Satizabal, Michael L. Alosco, Wei Qiao Qiu, Kathryn L. Lunetta, and Joanne M. Murabito from Boston University, Boston Medical Center, University of Vermont, and University of Texas Health Science Center aimed to characterize the circulating innate and adaptive immune system by profiling immune cell phenotypes from a community-based cohort. Their research paper was published in Aging’s Volume 15, Issue 10, on April 27, 2023, entitled, “Circulating immune cell phenotypes are associated with age, sex, CMV, and smoking status in the Framingham Heart Study offspring participants.”

“We hypothesize that we will identify immune cell phenotype and ARIP [age-related immune phenotype] measure associations with CMV serostatus, age, and sex, as well as associations with cardiovascular risk factors.”

The Study and Participant Characteristics

The Framingham Heart Study (FHS) is a community-based prospective cohort study that began in 1948. It initially recruited 5,209 primarily white American adults of European ancestry as the Original cohort. In 1971, the Offspring cohort was established, consisting of the children of the Original cohort and their spouses. The Offspring participants have been examined every 4-8 years since enrollment. 

For this study, 1,332 Offspring participants who attended exam seven (1998 to 2001) and had two or more vials of stored peripheral blood mononuclear cells (PBMCs) were identified. From this group, a study sample of 996 dementia-free individuals, aged 40 years and older, was selected. This cohort had a mean age of 62 years, with 52% representing males. All participants provided written informed consent, and the FHS exams were approved by the Institutional Review Board at Boston University Medical Center.

The research team used cryopreserved cell samples from the study participants to conduct comprehensive analyses of 116 circulating immune cell phenotypes, including subtypes of CD4 and CD8 T cells, B cells, NK cells, and monocytes. These subsets were further categorized based on specific surface markers to provide a detailed characterization of the immune cell populations.

The Results

Significant associations between circulating immune cell phenotypes and age, sex, a common virus, and smoking were revealed in this study. With advancing age, researchers saw a decline in the overall number of immune cells, as well as alterations in the distribution of different immune cell subsets. Notably, older individuals exhibited a higher proportion of memory T cells and a lower proportion of naive T cells, suggesting a shift towards a more experienced immune profile. Furthermore, females exhibited a higher abundance of immune cells compared to males, which may contribute to their generally stronger immune responses.

Cytomegalovirus (CMV), a common herpesvirus, can have a profound impact on the immune system. The study found that CMV seropositivity was associated with distinct alterations in immune cell phenotypes. CMV-positive individuals displayed higher numbers of late-stage differentiated effector memory T cells, which are indicative of previous exposure to CMV. This observation suggests that CMV infection contributes to the age-related changes in immune cell populations.

Smoking has long been recognized as a detrimental habit that affects overall health, including the immune system. This study uncovered compelling evidence linking smoking status to immune cell phenotypes. Smokers exhibited a higher proportion of pro-inflammatory immune cells, such as activated T cells and pro-inflammatory monocytes, while non-smokers had a higher proportion of regulatory T cells that help maintain immune balance. These findings emphasize the detrimental impact of smoking on immune cell profiles and further underscore the importance of smoking cessation.

“Importantly, we did not identify significant immune cell associations with other risk factors, such as body mass index, prevalent cardiovascular disease, hypertension or diabetes.”

Conclusions

“Our observations confirm and extend known associations of immune cell subtypes with CMV and age that show a shift from a naïve phenotype towards an exhausted phenotype. We report sex differences, with males exhibiting a more exhausted, cytotoxic landscape than females. We identified associations between CD8 exhausted cells and B cell subsets, but not overall B cells, with smoking status.” 

This research provides valuable insights into the relationship between circulating immune cell phenotypes and age, sex, CMV infection, and smoking status. In conclusion, the team did not find significant associations between these immune cells and cardiovascular risk factors. They did find some weak associations with cardiovascular disease, diabetes and hypertension. The findings contribute to our understanding of age-related changes in the immune system and highlight the impact of lifestyle factors on immune health. By unraveling the complex interplay between these variables, this study paves the way for future research on interventions and strategies to support healthy immune aging.

“While further studies in larger, more diverse sample[s] and more than one time point with immunophenotypic data are needed, this work will provide a valuable resource for future studies of the association of immune cell phenotypes and incident age-related disease.”

Click here to read the full research paper published by Aging.

Aging is an open-access, peer-reviewed journal that has been publishing high-impact papers in all fields of aging research since 2009. These papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

Brain Aging Insights from Individuals Without Neurodegeneration

The Trending With Impact series highlights Aging publications (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) that attract higher visibility among readers around the world online, in the news and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Aging-US.com.

Listen to an audio version of this article

A healthy brain continuously produces new proteins to support synaptic plasticity, maintain neuronal health, facilitate signaling pathways, produce neurotransmitters, enable neuroplasticity and adaptation, and meet its metabolic demands. These processes are essential for normal brain function, learning, memory, and overall cognitive abilities. Researchers believe that the dysregulation of proteins is at the core of brain aging. However, the exact recipe for protein dysregulation that leads to accelerated brain aging and neurodegenerative disorders has yet to be brought to light. 

Previous brain proteostasis (referring to the maintenance of protein homeostasis in brain cells) studies in individuals with Alzheimer’s disease (AD) pathology and age-related neuropathological changes have shown protein dysregulation leading to a buildup of amyloid plaques and neurofibrillary tangles. While these studies have greatly enhanced our knowledge of brain aging, gaps in our understanding remain. What proteomic characteristics do healthy brain aging individuals—without neurodegenerative disorders—have in common?

“To our knowledge, whole phosphoproteomes centered on the human brain aging without AD pathology are unavailable.”

In a new study, researchers Pol Andrés-Benito, Ignacio Íñigo-Marco, Marta Brullas, Margarita Carmona, José Antonio del Rio, Joaquín Fernández-Irigoyen, Enrique Santamaría, Mónica Povedano, and Isidro Ferrer from Bellvitge Institute for Biomedical Research, Universidad Pública de Navarra, Barcelona Institute for Science and Technology, and University of Barcelona aimed to shed light on the mechanisms underlying brain aging in the absence of AD pathology and age-related neuropathological changes. Their research paper was published on May 13, 2023, in Aging’s Volume 15, Issue 9, and entitled, “Proteostatic modulation in brain aging without associated Alzheimer’s disease-and age-related neuropathological changes.”

The Study

The production of new proteins is crucial for maintaining protein homeostasis in the brain. A post-translational modification used to maintain this homeostasis is protein phosphorylation. In this study, the researchers conducted proteomic and phosphoproteomic analyses of frontal cortex samples from the donor brains of deceased individuals between the ages of 30 and 85. These individuals had passed away due to non-neurological complications and were reported to have had full cognitive function. Individuals were divided into four groups: young group one (30–44), middle-aged group two (45-52), early-elderly group three (64–70), and late-elderly group four (75–85).

“​​We chose the FC [frontal cortex] because of its role in cognition and emotion and the abundant molecular information that permits comparison with other studies.”

Conventional label-free- and SWATH- (sequential window acquisition of all theoretical fragment ion spectra) mass spectrometry were used to assess the (phospho)proteomes of the frontal cortices from individuals in all four age groups. Immunohistochemistry and/or western blotting was/were also used to validate a subgroup of proteins. The researchers categorized deregulated proteins and phosphoproteins into eight clusters based on their age-dependent expression similarity (see paper for clusters). Interestingly, protein and phosphoprotein levels of the larger hierarchical clusters were stable until the age of 70 years. After 70, the late-elderly group showed significant decreased or increased expression of protein clusters one and seven, and major phosphorylation modifications occurred in clusters four and eight.

Results

The team then used multi-comparative analyses to categorize altered proteins and phosphoproteins as neuronal, astroglial, oligodendroglial, microglial, and endothelial. They observed a similar pattern among proteomic and phosphoproteomic alterations: major changes were related to neuronal cell populations across all four groups—and these changes were more pronounced with age. Cytoskeletal and membrane proteins accounted for the largest number of differentially-expressed proteins and phosphoproteins.

“Furthermore, main alterations in the proteome are associated with proteins specific to neuronal populations, rather than those found in other cell types in the brain.”

Their findings also revealed a decline in the expression of P20S α + β with aging, while the expression of P19S and immunoproteasome subunits LMP2 and LMP7 remained preserved. Notably, the expression levels of an autophagy component, ATG5, remained unchanged with age. Some mitochondrial membrane proteins showed altered levels at advanced ages, but key markers of mitochondrial function were preserved. These findings suggest a potential preservation of these pathways in advanced aging, contrasting with observations in neurodegenerative disorders. Additionally, reduced levels of GSK3α/β were observed, and the researchers point out that this decrease in GSK3α/β with age may be understood as protective against different age-related brain diseases.

Summary & Conclusion

“Therefore, our results fill the gap between brain ageing without ADNC [AD neuropathological changes], and cases with early and advanced stages of AD pathology.”

The researchers are forthcoming about limitations of this study. Given it is rare for old-aged individuals not to have neurological deficits, AD or other neuropathological changes, their main limitation was that each of the four groups included merely four individuals. Despite limitations, these findings contribute to our understanding of brain aging in the absence of AD pathology and age-related neuropathological changes. 

The study revealed that major changes in protein expression were primarily associated with neuronal cell populations and became more pronounced with age. The preservation of specific protein pathways, proteasome components, autophagy-related components, and mitochondrial markers in advanced aging individuals without neurodegenerative disorders suggests the presence of resilience mechanisms that protect against protein dysregulation and neurodegeneration. Overall, this research provides valuable insights into the proteomic characteristics of healthy brain aging and highlights potential targets for therapeutic interventions aimed at promoting healthy brain aging and preventing age-related neurodegenerative diseases. Further studies are necessary to elucidate the specific mechanisms underlying these proteomic alterations and their functional implications in brain aging.

“The present observations identify proteostatic changes, including different changes in the phosphoproteome in the human FC in brain aging in the rare subpopulation of old-aged individuals without neurological deficits, and not having ADNC and other neuropathological change in any region of the telencephalon.”

Click here to read the full research paper published by Aging.

Aging is an open-access, peer-reviewed journal that has been publishing high-impact papers in all fields of aging research since 2009. These papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

The Brain Age Gap

The Trending With Impact series highlights Aging publications (listed by MEDLINE/PubMed as “Aging (Albany NY)” and “Aging-US” by Web of Science) that attract higher visibility among readers around the world online, in the news and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at Aging-US.com.

Listen to an audio version of this article

Aging is a risk factor for many diseases, including Alzheimer’s disease (AD). While scientists have made some progress in understanding the physiology of aging and its relationship to AD and related disorders, our understanding remains incomplete (to say the least). It is possible that civilization is currently in the midst of an artificial intelligence (AI) and machine learning (ML) “boom.” Researchers are now using AI and ML technologies to elevate our comprehension of aging and aging-related diseases.

“Artificial intelligence (AI) and machine learning (ML) technologies can help us better understand these diseases and aging itself by using biological data from the brain or other sources to create a mapping between age and biological data.”

In a new editorial paper, researchers Jeyeon Lee, Leland R. Barnard and David T. Jones from the Mayo Clinic in Rochester, Minnesota, discuss a recent study they conducted and explore the potential of AI to revolutionize the field of geriatrics. Their editorial was published in Aging’s Volume 15, Issue 8, on April 3, 2023, entitled, “Artificial intelligence and the aging mind.”

Their Study

In a recent 2022 study, Lee, Barnard, Jones, and the rest of their team developed convolutional neural network-based brain age prediction models using a large collection of data from brain magnetic resonance imaging (MRI) and brain fluorodeoxyglucose positron-emission tomography (FDG-PET) in people aged from 26 to 98 years old. In a sample of cognitively normal individuals, the AI models showed accurate brain age estimation of which a mean absolute error (MAE; unit, years) was 3.08±0.14 for the FDG-based model and 3.49±0.16 for the MRI-based model. 

The team found that higher brain age gaps (the difference between biological age and chronological age) were estimated in cohorts with neurodegenerative disorders—including mild cognitive impairment (MCI), AD, frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB)—than normal controls. The brain age gap was strongly associated with pathologic tau protein levels and cognitive test scores. This gap also showed longitudinal predictive ability for cognitive decline in AD-related disorders.

“Interestingly, the brain imaging patterns generating brain age gaps in AD showed higher similarity with normal aging than other neurodegenerative syndromes implying that AD might be more like an accelerated representation of biological aging than others.”

Summary & Conclusions

The study conducted by Lee, Barnard, Jones, and their team using neural network-based brain age prediction models has shown promising results in accurately estimating brain age and identifying differences between normal aging and neurodegenerative disorders. However, the authors of this editorial note that variations in data make creating a uniform language used to compare and contrast large sums of data very difficult.

“Although more research and optimization are needed to determine its clinical usefulness, the study of brain age has great potential as a tool for understanding brain aging and age-related diseases.”

In conclusion, aging is a complex process that increases the risk of Alzheimer’s disease and various diseases. Recent advancements in artificial intelligence and machine learning technologies offer new opportunities to better understand the underlying mechanisms of aging and aging-related disorders. This research opens up exciting possibilities for the future of geriatric care and improving the lives of aging populations. As technology continues to advance, it is likely that we will gain further insights into aging through the brain age gap, ultimately leading to better prevention, diagnosis and treatment options.

“The fact that the brain age gap is a comprehensive and intuitive measure of disease severity using biological data that is already being acquired in clinical practice, makes it an attractive biomarker for further development for clinical use [8].”

Click here to read the full editorial paper published by Aging.

Aging is an open-access, peer-reviewed journal that has been publishing high-impact papers in all fields of aging research since 2009. These papers are available to readers (at no cost and free of subscription barriers) in bi-monthly issues at Aging-US.com.

Click here to subscribe to Aging publication updates.

For media inquiries, please contact [email protected].

  • Follow Us