Trending With Impact: Epigenetic Shifts, Aging, and Disease

Researchers from Harvard University and the Broad Institute wrote a theory article, published by Aging in 2021, and entitled, “Shifting epigenetic contexts influence regulatory variation and disease risk.”

Figure 1. Cross-tissue accessibility.
Figure 1. Cross-tissue accessibility.

The Trending with Impact series highlights Aging publications that attract higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at

Listen to an audio version of this article

From birth to advanced age, chemical changes occur which affect the genetic material in human cells comprising chromosomes—known as chromatin. These nongenetic changes, otherwise referred to as epigenetic aging, accumulate with age and impact transcriptional programs. From growth and development to adulthood, these changes can denote shifting epigenetic contexts. 

“Shifting epigenetic contexts influence regulatory variation and disease risk”

There is a considerable amount of evidence that suggests a causal relationship between changes in epigenetic state and cell aging. Curiously, researchers have repeatedly observed similar epigenetic changes occurring across different cell and tissue types, throughout different stages of life. These potentially synchronized changes may implicate mechanisms of the aging process.

“Together, these findings suggest that a central trajectory for epigenetic state that reflects innate aging processes may exist [20], upon which extrinsic and cell-type effects are layered.”

In 2021, researchers from Harvard University and the Broad Institute wrote a theory article that was published in Aging’s Volume 13, Issue 12, and entitled, “Shifting epigenetic contexts influence regulatory variation and disease risk.” The authors described common epigenetic trends throughout human growth, development, and aging. They also aimed to show how changing epigenetic contexts may influence the behavior of evolutionary forces and risk of genetic disease. 


The researchers point out that in order to better understand the contribution of epigenetic changes to disease and aging, it is important to understand the developmental changes that occur between fetal and adult tissues, and their interaction with epigenetic aging.

“Furthermore, these fetal to adult epigenetic shifts can be compounded by additional modifications through aging-associated epigenetic changes.”

Characterizing these epigenetic trends and examining their potential interaction with later-in-life epigenetic aging were main goals of this study. In order to do this, the researchers defined genomic regions where, over the course of development and aging, chromatin accessibility consistently shifts. Chromatin can be broadly classified in either of two epigenetic states: activating or repressing modifications. These states refer to chromatin accessibility and the increased or decreased ability of DNA to access gene-regulatory machinery, such as transcription factors. The authors note that they used an accessibility-based definition of epigenetic context, and that there are other marks of epigenetic changes (e.g. methylation, and etc.) that are not captured by this definition.

“Epigenetic marks established during development can persist into adulthood [9], but they do so in the context of shifts in epigenetic states (see below) as tissues transition into their adult forms and functions.”


The researchers utilized genome-wide association study (GWAS) datasets to find that gene variants in adult tissues gaining nearby accessibility have stronger associations across a number of aging-related diseases, including neoplasms, arthritis, and atherosclerosis.

“In other words, it is the change in epigenetic context that modifies the regulatory potential of these variants, and this has direct impacts on individual associations with multiple diseases.”

Among their many findings, the researchers explain that the regulatory sequences which are most active during development are subject to strong negative selection later in life. 

“We utilize our findings to propose a model for how evolutionary forces may have acted at these loci in humans, and how these forces in turn influence the distribution of mutations conferring heritable disease risk across a number of age-associated pathologies.”

Click here to read the full theory article, published by Aging.


Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Behind the Study: COVID-19 and Chronological Aging

Dr. Michael P. Lisanti from The University of Salford describes his 2020 paper published by Aging, entitled, “COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection?

Researchers explain their studies that were published in Aging

Behind the Study is a series of transcribed videos from researchers elaborating on their recent oncology-focused studies published by Aging. A new Behind the Study is released each Monday. Visit the Aging YouTube channel for more insights from outstanding authors.

Hi, I’m professor Michael Lisanti and I’m the Chair of Translational Medicine at the University of Salford, and today I want to talk about our new prospective article, which links COVID-19 and chronological aging, and is focused on potential treatments and prevention strategies. I got interested in this topic because there seems to be an association between COVID-19 fatalities and aging, especially in patients with advanced chronological age. Patients over 65, and their 70s and 80s, are more likely to have increased morbidity and mortality. And so, I thought there may be a link there, between aging and senescence and the viral replication, as well as the potential therapy.

What I’d like to highlight about this particular article is that it proposes potential treatment strategies as well as prevention strategies. The reason is because it appears that this disease, the virus itself, may target senescent cells and senescent cells have been rewired to increase protein synthesis and also to increase the secretion of inflammatory mediators, which is known as the SASP, the senescence-associated secretory phenotype.

And so, one idea would be to use drugs that are senolytics. Senolytics are drugs that target and lyse senescent cells, but also to use protein synthesis inhibitors. The reason is because proteins synthesis inhibitors and senolytic drugs would prevent viral replication, which would reduce viral transmission. And so this could be used as a preventative strategy. I’ll just give you a couple of examples. If you have a drug which is an FDA-approved protein synthesis inhibitor, it should inhibit the secretion of inflammatory mediators, like IL-6. It should inhibit the fibrosis by preventing the secretion and production of collagen. And most importantly, the virus is also made of protein, so if you have a protein synthesis inhibitor, it will also inhibit viral replication.

Figure 1. What is the relationship between COVID-19 and advanced chronological age?
Figure 1. What is the relationship between COVID-19 and advanced chronological age?

There are three drugs I’d like to mention in particular. One is azithromycin, which is a senolytic. The others are also protein synthesis inhibitors, like doxycycline and rapamycin. All three have been shown to reduce IL-6 production because of their inhibition of protein synthesis activity. And also, all three of them have been shown to inhibit viral replication, not specifically of COVID 19, but since this effect on protein synthesis is a generalized effect, it should work for any virus. For example, azithromycin has been shown to inhibit the replication of Zika virus and Ebola virus, doxycycline has been shown to inhibit the replication of dengue virus, and rapamycin, which is another protein synthesis inhibitor with anti-aging properties, has been shown to inhibit replication of the HIV virus.

So, it seems to me that it’s a no-brainer that we should be repurposing FDA-approved drugs that are protein synthesis inhibitors, both for prevention, to prevent the inflammation fibrosis that’s occurring that’s killing people with COVID-19, and also to prevent the contagion by inhibiting viral replication. So I think this could provide a very inexpensive way forward because drugs like doxycyclin are only less than 10 cents a day, and could be used, as I said, for both prophylaxis and treatment. But, I think we need to use it early in the disease to prevent the fibrosis and inflammation, which makes them long, very inflexible and unable to expand and contract, and leads them to a fibrotic lung disease, which prevents patient recovery and could explain lethality of the disease.

I would like to directly engage with people to pick this up, to bring this forward as potential clinical trials. These clinical trials could be done directly in healthcare workers because they are the most vulnerable. In addition, they could be done in patients with advanced chronological age, or even with patients that are asymptomatic, that have been identified as the virus-positive. And it would be like a window trial where you would do viral titers first, and then you would give the drug and then you could also look at the viral titers after administering the drugs. So this would be a very easy, straightforward trial.

All the diagnostic tools for COVID-19 have already been identified and perfected, so all we need to do is interject FDA-approved drugs, which are protein synthesis inhibitors, to look at the eradication, the virus. So this would also be a very inexpensive clinical trial. But I would like to engage with infectious disease experts and virologists to help facilitate. Thank you.

Of course, I would like to thank two foundations which have supported our work: The Fox Point Foundation in Canada and The Healthy Life Foundation in the UK for providing the equipment and infrastructure at the University of Salford.

Click here to read the full paper, published by Aging.


Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Hyperbaric Oxygen: A Therapy for Normal Aging?

Hyperbaric oxygen therapy (HBOT) provides significant benefits for patients who have suffered brain damage. In this 2020 study, researchers assessed the effects of HBOT among healthy aging participants.

Figure 4. Brain regions with significant post hyperbaric oxygen therapy changes in cerebral blood flow.

The Top-Performer series highlights papers published by Aging that have generated a high Altmetric attention score. Altmetric scores, located at the top-left of trending Aging papers, provide an at-a-glance indication of the volume and type of online attention the research has received.

Read Aging’s Top 100 Altmetric papers.

Listen to an audio version of this article

Cognitive decline among elderly populations 60 years of age and older is common. At least 50% of all community-dwelling individuals in this demographic express concern about declining cognitive abilities. Interventions such as exercise, healthy diets, and cognitive training (if maintained habitually) have shown positive effects on cognitive function. Another intervention with potential cognitive benefits—dating as far back as 1662 (before the discovery of oxygen)—in short, is the ingestion of pure pressurized oxygen, or hyperbaric oxygen therapy (HBOT). 

Hyperoxic exposures increase the amount of oxygen dissolved in the body’s tissues and induce hypoxia-like physiological effects, including stem cell proliferation and angiogenesis. Previous studies have shown that repeated intermittent HBOT to improve cognitive functions in post-stroketraumatic brain injury, and anoxic brain damaged patients, even years after an incident. While a number of studies have demonstrated that this therapy induces neurotherapeutic effects in injured patients, the effects of HBOT in normal aging populations had previously not been evaluated. 

In 2020, researchers from Shamir (Assaf-Harofeh) Medical CenterTel-Aviv University, and Bar Ilan University conducted the first published study examining the neurocognitive effects of hyperbaric oxygen therapy in normal aging populations. Their paper was published in Aging’s Volume 12, Issue 13, and entitled: “Cognitive enhancement of healthy older adults using hyperbaric oxygen: a randomized controlled trial.” To date, this research paper has received an impressive Altmetric Attention score of 111


“The aim of the current study was to evaluate whether HBOT affects cognitive function and brain perfusion in normal, non-pathological, aging adults.”

A total of 63 patients were admitted into this study. The participants’ age, gender, right/left hand dominance, education, employment, medical conditions, medications, and other characteristics were collected at the start of the study. The median age was approximately 69 years old. Cognitive function of each participant was evaluated at baseline in terms of memory, attention, information processing speed, motor skills, and a number of other measures of neurocognitive function.

The participants were then assigned either the HBOT arm or the control arm of the study. Both groups had similar characteristics and cognitive function at baseline. Half of the participants received 60 daily sessions of HBOT over the course of three months. All post-intervention measurements were taken at least one week after the last hyperbaric session. The assessors were blind to the assignment each participant was given when reevaluating for cognitive function after HBOT intervention.

“Our protocol included 60 sessions of 100% oxygen at 2 ATA including 3 air breaks during each session in order to utilize the hyperoxic hypoxic paradox and minimize the risk for oxygen toxicity.”


“In summary, the study indicates that HBOT can induce cognitive enhancement in healthy aging populations.”

While the researchers are forthcoming about limitations of this study, results show that 60 sessions of hyperbaric oxygen therapy improved attention, information processing speed, executive function, and global cognitive functions. Importantly, HBOT also significantly improved cerebral blood flow in certain cortical regions of the brain.

“Moreover, the HBOT group had a significantly enhanced brain perfusion in the superior and middle frontal gyri, supplementary motor area and superior parietal lobule.” 

Click here to read the full research paper, published by Aging.

Aging is an open-access journal that publishes high-quality research papers bi-monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our communities from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Behind the Study: Interview with Dr. Gil Atzmon

Dr. Gil Atzmon from the Albert Einstein College of Medicine discusses his 2017 study published by Aging, entitled, “The complex genetics of gait speed: genome-wide meta-analysis approach.”

Researchers explain their studies that were published in Aging
Researchers explain their studies that were published in Aging


Welcome to the Aging YouTube channel. This interview is with Dr. Gil Atzmon in the department of medicine and genetics at the Albert Einstein College of Medicine in the Bronx, New York. (He is) also in the department of human biology and a faculty member of the Department of Natural Science at the University of Haifa in Haifa, Israel. (He is) talking about a manuscript published in Volume 9, Issue 1 of Aging titled, “The complex genetics of gait speed, genome-wide meta analysis approach.”

Dr. Gil Atzmon

So the paper that I’m talking about is, “The complex genetic of gait speed: genome-wide meta analysis approach.” And what we did here is to combine 21 studies around the world and try to figure out what is the genetic predisposition for gait speed. The idea was that if we are going by number, then we will find something because the size is a matter of the resolution that you can pinpoint the genetic variant that might have an effect on the phenotype that, in our case, is gait speed. So when you’re talking about challenges, think of do you have 21 people or 21 groups that you need to combine together and figure out how you harmonize the data that they provide you with and try to figure out what’s going on there. This is a challenge because it lasted for almost four years until we had the paper done and published.

But eventually what we found was great. Although what we expected to find once we started this endeavor, we thought we’d have variants that have genomic significance. Meaning, if you have this variant either you have a lower gait speed or you have higher gait speed or normal gait speed. And we’re talking about elderly people. That’s what we tried to figure out. We found out that we didn’t find such a variant, but we find other alternatives.

We try to use protein analysis, group analysis, pathway analysis on all kinds of stuff. And every time that we put the finger on such a different analysis, we found something, some other interesting views. As I said, for genetic variant we didn’t find any, meaning the closest that we have was 10 to the -7 when the threshold was 10 to the -8.

Figure 1. Manhattan plot of meta-analysis of genome wide association studies of gait speed for ~2.5 million genotype and imputed SNPs

But when you look at these genes, we found that there are a couple of them that have higher prevalence among the top hit. Again, they didn’t reach a significance, but the minute you have such a number in the top hits, you think it might be relevant. We have a HLA-DPB1, we have the POM121-L2, and so forth and so forth. And you can see in the paper to look at those variants.

The interesting idea I’m seeing of the observation was that there was a couple of hits that we saw only once, but they are hits such as the [inaudible 00:03:36] 12I02 with a peak, meaning there is aggregation of a couple of hits around this gene or inside this gene. Again, it tells us that this gene might be relevant to what we are looking for. When we did the pathway analysis we found a couple of them that are associated with diabetes, which if you think about it, that really can cause people to either have slow gait speed or higher gait speed. It depends on the disease that you have. We have a couple of hits in the pathway, and a lot of this link us to cancer. And again, the same thing. If you think about it, the minute you have a disease, your performance, in this case it’s gait speed, is either declined or increased.

So we can see in both cases, though we didn’t find the right hit, still what we found has some biological explanation. It also does expression analysis or expression QTL. QTL means that those genes that are associated with the expression of the genes didn’t code in the phenotype, we found a couple of them that were higher significance. Again, another example of what is the predisposition of those genes to the phenotype that we had.

So, all in all, we concluded that we found some relevant genetic predisposition for this phenotype. And although we didn’t find the exact variant that can say “if you have it, you have low speed, and if you don’t have it, you have a higher speed,” we think that if we’re looking at the story that we crafted, we think that we’ve found some ideas, some biological explanation which is what is inside this paper.


Aging was launched in 2009 and is currently a traditional peer reviewed journal with free access which publishes in monthly issues. Topics include high impact research papers of general interest and biological significance in all fields of aging research, as well as topics beyond traditional gerontology. You can click on the link in the description below to order a reprint or read the manuscript that was discussed in this interview on Please feel free to subscribe to our YouTube channel and connect with us on Facebook, Twitter, or LinkedIn. Thank you.

Click here to read the full paper, published by Aging.


Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Behind the Study: Interview with Dr. Marina P. Antoch

Dr. Marina Antoch of Roswell Park Comprehensive Cancer Center discusses her 2017 study published by Aging entitled, “Physiological frailty index (PFI): quantitative in-life estimate of individual biological age in mice.”

Researchers explain their studies that were published in Aging
Researchers explain their studies that were published in Aging

My name is Marina Antoch, and I am a member of Department of Pharmacology and Therapeutics for Roswell Park Cancer Institute. And actually working here at Roswell for 10 years now. Recently my group, in collaboration with few other laboratories and the local biotech startup company, Everon Biosciences, summarize the recent research in the paper that was published in the journal, Aging. This paper is related to working out a novel approach that will allow us to assess the overall health in the preclinical animal model organelle.

Working with the company that’s really interested in developing some therapeutics that could combat aging, slow down the aging, we really need to get some quantitative tools that we can use to assess the efficacy of those molecules of those potential drugs that they identify in their preclinical studies. There were few works that would suggest some approaches how we can do that, but none of these really satisfy the goals that we have.

So we have to think of some other approaches that we may use, and there were several requirements that we really need for developing the successful protocols. First of all, we wanted this protocol to be absolutely non-invasive for our preclinical animal models, so it could be repeated on the same subject for several times. We can actually look through the lifespan of the subject, how these parameters and overall health is changed with age. They have to be really quantitative. So we didn’t really want to rely on some observational things like the hair grain, for example, that’s been considered the hallmark of aging for many years. Many of these observations, they really require coring by several individual observers and then they are compared, and they’re very subjective. (We) really wanted to get something more objective that we could put in numbers.

This manuscript that was published actually summarized almost three-year work that was dedicated to this problem. We tried many different approaches and finally came up with a protocol that we called determining physiological frailty index. And this frailty index is just the cumulative estimate of many, many physiological parameters that are related to the health of the animal. And they’re very relevant to human studies since these such parameters as body weight or physical strength that we could measure, usually using special equipment or blood pressure that we can measure in animal models-very similar to how we do it in humans, blood cell parameters, and a few others that can really give us the quantitative assessment of each parameter. Then we compare how much it is in older animals – or in animals that don’t feel well. How much of these parameters differ from when compared to the younger animals, and that gave us a certain quantitative estimate. So why is that important? It’s important for the reason of testing, as I mentioned already, various potential biologicals that would be developed as anti-aging drugs.

Figure 1. Assessment of individual biological age of NIH Swiss mice

This protocol will now allow us to assess, quantitatively, the health status of animals then treat them with potential therapeutics, and then down the road, repeat this measurement to see if this frailty index, brought any improvement or not, and that would be indicative of the efficacy of the therapy. So this is one of the major goals of our research and why we developed this protocol. But for all future studies, we have actually another thought in mind, how we may use this particular approach. We’re now related to cancer research as you may know, due to the really successful development of many anti-cancer drugs, and many anti-cancer therapies. There are more and more cancer survivors. Actually in 2016, the American Cancer Society published statistics saying that there’s about 15 million people that went through the very harsh chemotherapeutic and radiation therapies. They are cancer-free. They never had relapsed cancer, but these therapies definitely affect a lot of other aspects of their health. And one of those aspects, besides any specific diseases, that they may develop is the accelerated aging.

With the development of more and more therapeutics, the expectation is that in 2026, there’ll be more than 20 million of cancer survivors. We’ll really need to be thinking about developing novel cancer therapeutics. We really should think not to make them more efficient and less toxic, but also to be able to diminish their damaging effect down the road at the latest stages of the life of basically to improve the quality of life of cancer survivors by adjusting the treatments at the time that we treat cancer. So we have less problems later on. To do that first, we have to test this in our preclinical models and for success of those tests, we really needed some quantitative assay that we can apply.

We think that our protocol of physiological frailty index would serve this purpose very well. So, basically, testing the efficacy and the therapeutic efficacy of different chemotherapeutic drugs. We may also look on a long-term effects to see how that affects animals health and adjust treatments based on the preclinical evaluation. This is why we think it’s really an important tool that could be very useful in many aspects of preclinical studies, and maybe sometimes applied then as many of preclinical studies translated into the clinical applications.

I’m also thinking that it may be very relevant for treatment of childhood cancers. Childhood cancers are very specific type of cancers. First of all, the regiments are actually the same as are worked out for adult people. Although young people and adult people are very different physiologically. They’re just adjusted by the weight, the age a little bit. But in principle, they are about the same.

The rate of cure for some types of childhood cancers nowadays is also pretty sufficient. So there is a large population of kids that went through chemotherapy and radiation that was applied to a very critical moment in their development. So they are effective. It’s really very significant. Actually the longevity of those childhood cancer survivors is statistically lower and they will premature age and develop a lot of different complications. So I think that that could be particularly important for treating various types of childhood cancers, and that can really affect the way we are treating childhood malignancies.

If we are able to reach our goal and adjust the treatment so we’re focusing not only on immediate therapeutic effect, but take into account these long-term complications that would inevitably arise after the treatment, we can significantly improve the quality of life of cancer survivors. That would be a very significant impact on the overall health of the population, I would say.

Click here to read the full study published by Aging.

Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Behind the Study: Potential Reversal of Epigenetic Age Using Diet and Lifestyle

Dr. Kara Fitzgerald details her publication by Aging, entitled, “Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial“.

Researchers explain their studies that were published in Aging

Behind the Study is a series of transcribed videos from researchers elaborating on their recent oncology-focused studies published by Aging. A new Behind the Study is released each Monday. Visit the Aging YouTube channel for more insights from outstanding authors.

Listen to an audio version of this post

Hi, I am Kara Fitzgerald. I’m on faculty at The Institute for Functional Medicine. I have a clinic practice in Newtown, Connecticut. The title of our paper is “Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial“.

We became interested in epigenetics because we practice functional medicine. So we’re concerned with genetic expression. Particularly, I would say that my first big wake-up call came from the research in cancer, epigenetics where the tumor micro environment hijacks epigenetic expression kind of takes over hypermethylating tumor suppressor genes, turning on oncogenes, et cetera. Our question became if we are pushing methylation forward with high dose methyl donors such as full later B12, could we be influencing cancer, epigenetics at all? That and a few other reasons prompted us to develop the diet and lifestyle intervention and try a very nutrition forward approach to changing epigenetic expression.

However, we can’t get an Illumina EPIC array in clinical practice. And so once we designed the program and started to use it in clinical practice, the next question was: Are we making a difference at all, in epigenetic expression? We were given an unrestricted grant by Metagenics. Metagenics is a professional supplement company out of California so they were not involved in study design. They had no control over the study and/or findings or investment in products that we used.

We hired Helfgott Research Institute out of National University of Natural Medicine to run our study. So I, myself and my colleague Romilly Hodges who designed the program, we were not involved in the execution of the program. So that’s a little bit of the background. And what we did was we had a pilot study. We looked at men between the ages of 50 and 72.

We didn’t include women, because at that age range … so, we wanted to look at middle-age when we know DNA methylation starts to go awry, global hypomethylation with those regions of aberrant hypermethylation … so that was the time we wanted to look at, but we didn’t have enough money to have a larger population. So if we included women in that age range, we would have premenopausal perimenopause and post-menopausal subjects, and it would be difficult for us to tease out that influence on the findings. So we decided in our pilot to just go with men and we did our eight-week diet and lifestyle intervention. The diet is again, designed specifically to influence methylation. It’s very methyl, donor dense. There are a lot of greens. There are other nutrients that can influence the methylation cycle, such as beets, choline from eggs.

Figure 1. CONSORT 2010 flow diagram.

We encouraged people to have liver a few times a week, which is high again in folate and B12. We also included a lot of the polyphenols that have preclinical data on them for influencing DNMT and Tet enzymes. In fact, a lot of really interesting research, again, going back to cancer, epigenetics, and these polyphenols actually influencing the re-expression of hypermethylated and inhibited tumor suppressor genes. So we were interested in that particularly because a lot of those polyphenols actually have very long traditional use history. So for instance, curcumin or EGCG or resveratrol, luteolin, lutein, ellagic acid, quercetin. When you look into traditional medicine, we see of course millennia long use for green tea and curcumin by way of example, but they’re all pleiotropic in their effect: Anti-inflammatory, antioxidant, anti-tumor agenetic, et cetera. And at least some of those mechanisms I suspect are driven by epigenetic changes.

So diet heavy methyl donors, but also these methylation augmenting polyphenols. We included an exercise prescription, which was at least five days for 30 minutes at a perceived exertion of 60 to 80%. So not necessarily intense. We tracked sleep and encouraged them to get at least seven hours per night and gave them some basic sleep hygiene tips as they requested. There was a meditation intervention as well. So everything that we did has some evidence in the literature, either in clinical studies or preclinical of influencing favorably DNA methylation. We use two supplements, a prebiotic lactobacillus plantarum. We did that specifically because there’s some evidence that lactobacillus plantarium may increase that endogenous microbial production of folate, of natural folates. And we also included a greens powder. So again, the polyphenols that I just mentioned, those in a concentrated powder and our participants took each of those supplements twice a day.

Outcome, we looked at the EPIC Illumina array. We looked at a host of blood biomarkers, subjective questionnaires. Our chief finding, our most exciting finding, was using Horvath … we collected saliva and then using Horvath’s 2013 DNA methylation biological clock we showed a significant reversal of biological age in our subjects by 3.23 years as compared to the control group and that was a P value of 0.018. The within group change in our study participants was 1.96 years, so almost 2 years with a trend towards significance. The P value there is 0.066, so super excited about that finding. We’ve got more to unpack on the Illumina array. Triglycerides dropped in our study participants and LDL dropped in the study participants. Now I should state, I didn’t mention at the beginning, but these were healthy men, not on medication. We had a pretty strict criteria for enrollment.

It actually took us a while. We started this study in 2017. It took us quite a while to enroll because the program was rigorous and the selection process was relatively involved. Circulating folate, circulating methylfolate increased also in our study participants. I think that covers most of it.

We worked with nutritionists. This is another good point. Again, the program is rigorous and we had nutritionists support the study participants. They didn’t do any coaching. They actually just had an IRB approved script where they asked them if they had questions on the diet and then questions on exercise, et cetera, et cetera. So they were required to have some contact with the nutritionists. We had high adherence findings, and I look forward to publishing those and just exploring it. Nutrition interventions are notoriously poor, and I think we actually did well. I suspect it’s because we had these nutrition contact points with the subjects. To my knowledge, it’s the first of its kind study, randomized control study.

It was a double blind obviously, but it was a randomized control study where we had 20 in the control group and 18 in the study group, what else? It was eight weeks in duration. The other diet intervention, as we wrote about in the paper is the new age study and that was a Mediterranean diet over the course of the year. And they had some interesting epigenetic DNA methylation changes and a subgroup of that population did have lowering of biological age.

I want to thank Metagenics for their grant. I want to thank our team. Again, we worked with Helfgott Research Institute, National University of Natural Medicine in Portland, Oregon. My Co-PI from Helfgott is Ryan Bradley, statistician from Helfgott is Douglas Hanes. Emily Stack was the study manager. My team included Romilly Hodges, who is the nutrition director here at our clinic. She helped design. She and I designed the program. The other nutritionists involved are Janine HenkelMelissa TwedtDespina GiannopoulouJosette Herdell and Sally Logan. At McGill are Dr. Moshe Szyf and David Cheishvili, both helped with data analysis, particularly of the Illumina EPIC array. And Dr. Szyf also helped with study design.

So a big team, thank you to Dr. Steve Horvath and Dr. Josh Mitteldorf. Josh worked on Horvath, the DNA methylation clock analysis with some guidance from Steve Horvath. And so we’re deeply appreciative that work for us.

That’s our study. Our future is what we want to continue to look at this. I mean, this was our pilot study and we’d like to do a longer study, a larger study with men and women. So stay tuned, thank you.

Click here to read the full study published by Aging.

Click the links below for more information on corresponding author, Dr. Kara Fitzgerald:
Biological Aging Summary | Instagram | Facebook | Twitter | General Site | Younger You Program

Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Impact Journals to Present on Scientific Integrity at SSP Annual Meeting

Impact Journals is an exhibitor/sponsor and will be presenting its scientific integrity process at the Society for Scholarly Publishing (SSP) Annual Meeting, occurring virtually from May 24-27, 2021.

Impact Journals at the 2021 SSP annual meeting
Listen to an audio version of this announcement

BUFFALO, NY-May 19, 2021 – Scientific integrity is a crucial component of scholarly publishing. In order to consistently publish high-quality science, it is integral to have strong ethical standards for scientific and academic integrity. At Impact Journals, a growing industry of digital technologies, tools, and ideas are constantly being added to our robust scientific integrity process. Impact Journals (based out of Buffalo, New York) is an international open-access publisher of journals in the field of biomedical sciences. 

The Impact Journals process to maintain scientific integrity in scientific publishing is built around several components: 1.) Publicly available ethics statements; 2.) Adherence to industry standards for scientific publishing; 3.) Diligent and insightful peer-review; 4.) Elimination of plagiarism; 5.) Image forensics service; and finally, 6.) If a problem arises post-publication, we conduct investigations following COPE guidelines in cooperation with the authors and their affiliated institution.

In addition to our diligent peer-review process, Impact Journals uses advanced image forensics service to check applicable images in all submitted papers. This service includes multiple in-house and third party tools for image screening as well as to compare newly submitted images against images found on the Internet and those that have already been published in one of our journals. You may find more details about our scientific integrity process at, under Editorial Policies

Impact Journals is presenting our full scientific integrity process at the 2021 Society for Scholarly Publishing (SSP) Annual Meeting, occurring virtually from May 24-27, 2021.

To learn more about Impact Journals, or any of our journals, please visit

About Impact Journals:

Impact Journals is an open-access publisher, focusing on topics surrounding cancer research, all fields of aging research, and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Our mission is to provide scientists with the opportunity to share their exceptional discoveries, offer services that enable rapid dissemination of results, and to present vital findings from the many fields of biomedical science. Our goal is life without disease.

Impact Journals 
Impact Journals LLC
6666 E.Quaker St. Ste. 1 
Orchard Park, NY 14127

Follow Impact Journals on social media: 

Twitter –
Facebook –
Oncotarget YouTube Channel –
LinkedIn –

For media requests, please contact

Behind the Study: Dr. Andrei Gudkov

Aging Editorial Board member Andrei V. Gudkov, PhD, DSci, discusses his 2017 research paper published by Aging, entitled, “p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli.”

Researchers explain their studies that were published in Aging
Researchers explain their studies that were published in Aging

Behind the Study is a series of transcribed videos from researchers elaborating on their recent oncology-focused studies published in Aging. A new Behind the Study is released each Monday. Visit the Aging YouTube channel for more insights from outstanding authors.

Greetings. My name is Andrei Gudkov. I am working in Roswell Park Cancer Institute, designated cancer center located in Buffalo, New York. I am Senior Vice President for Basic Science and chair of Department of Cell Stress Biology. My research is focused on understanding of the mechanisms of deregulation of a variety of stress response pathways in cancer cells as well as in normal cells in relation to cancer origin, progression, or engraftment and trying to use the information which we are generating during this research to come up with new types of treatment of cancer or cancer prevention.

Recently, our interests have significantly switched towards studying of the mechanisms of aging in its relations to cancer, since, as we all know, both conditions are closely connected. During the last, probably 20 years, one of the central theories of aging in mammals has been evolving towards connection between chronic sterile inflammation, which is accumulating in tissues with age of a mammal, including humans, with systemic decline in regeneration capabilities, in function of organs and tissues, and increasing risk of major diseases, altogether known as aging-related diseases. And the source of this inflammation, its origin, has been the central focus of studies of many.

During last couple of years, the dominating opinion in the field is about the central role of senescent cells, cells which chose to stay irreversibly growth-arrested in response to DNA damage, which they acquire during their life. And, through that, change their phenotype in more significant way than just growth arrest, acquiring the ability to secrete a spectrum of pro-inflammatory factors.

These senescent cells, which initially were defined as such in tissue culture experiments, eventually were proclaimed to be the main suspects in their putative role of inflammation creators in aging organism. This idea has become really popular, especially following a series of brilliant works coming from number of laboratories, in which senescent cells were detected in vivo in mice and mouse models. And when these mice were treated with agents which eradicated these senescent cells, numerous signs of rejuvenation were observed.

I’m talking about the first paper of that kind appeared in 2011, Mayo Clinic, and the group led by Jim Kirkland and Jan van Deursen and a series of follow-up papers with similar results. In general, the idea of putting senescent cells in the position of the key sources of sterile chronic inflammation associated with aging came from Judy Campisi, who has provided the most important discoveries in that field.

Well, this theory is extremely appealing for many reasons. First, it is very well supported by evidence. Indeed, senescent cells, when they turn into senescents in culture, switch their phenotype into, so-called, SASPs, and that’s an associated secretory phenotype, the state in which cells continuously secrete pro-inflammatory factors. Second, these cells appear in culture as a result of serial passaging resembling aging. And, therefore, this link became kind of natural between aging and senescent cells. The presumption was that certain cells in the body who used up the number of divisions they can go through before they reach this state may be increasing with age and, therefore, these cells accumulate.

Each of them may become the source of sterile inflammation. Each single one provides a very weak signal, but, when they accumulate altogether, the impact may become significant and translated into pathological conditions. So recently, there were very few – and, even now, it is like that – very few biomarkers of senescent cells, none of which is very reliable because every single biomarker is kind of promiscuous and is not universally selective for senescent cells.

Among these biomarkers, two have been most popular. One is high level of expression of, so-called, senescent-associated senescent-associated beta-galactosidase, which can be detected chemically in fixed cells and tissues which undergo staining, including X-gal, which turn beta-galactosidase reaction into the blue dye under conditions which is not optimal for endogenous beta-galactosidases mammalian cells at low pH. And, under these conditions, the background beta-gal activity of normal cells is practically not seen and senescent cells become brightly visible. So this reaction, which unfortunately requires a cell… It can not be done on paraffin-embedded sections and require preservation of the enzymatic activity and, therefore, is available, mostly, on the frozen sections or in cells in culture… has been used very, very frequently. And in many papers, it has been just the only assay which was used for detection of so-called senescent cells.

Figure 1. Induction of p16Ink4a and SAβG in macrophages does not require p53.

The other biomarker, which resulted from a detailed analysis of promoters which are active selectively in senescent cells is the gene encoding cyclin-dependent kinase inhibitor p16. And the genes name is INK4a. In fact, this promoter of this gene is frequently upregulated in senescent cells, and it has relatively low background in other cells of the organism.

Again, p16 activation is not limited to senescent cells and, moreover, not every senescent cells has elevated p16, but that’s the best we have as of today. That is why, whenever the investigators want to create a mouse model in which they could have the desirable gene expressed exclusively in senescent cells, they use p16 promoter. And there are several mouse models; I’m aware of three in which reported constructs were put under p16 promoter. And the claim was that, when these reporters become obviously expressed in mouse tissues, that was interpreted as accumulation of senescent cells. Also, one can put under this promoter the gene which enables selective eradication of cells with this expression, and, therefore, there is an opportunity to selectively kill such cells. Again, this can be interpreted as a selective eradication of senescent cells.

Using these models, two groups of investigators claim that eradication of senescent cells in aged mice led to substantial demonstration of signs of rejuvenation and, in one case, with increased lifespan. Well, obviously, these data not only provided a very powerful support for the theory about the role of senescent cells in aging but also provided the proof of concept for development of pharmacological approaches to anti-aging treatment and treatment of conditions which lead to the high risk of development of age-related diseases, including cancer.

We obtained such mice in our laboratory, and we have been working with them during last couple of years. The mice we are using are coming from the laboratory of Norman Sharpless from North Carolina. And they have a luciferase reporter gene, which is substituting one of the alleles of p16 and, thereby, being expressed from the p16 promoter. We were pleased to see that these mice accumulate p16-driven luciferase-positive cells detected by in vivo imaging during their lives, which, actually, very well fit the senescent cell theory in their accumulation during life.

However, we were very surprised not seeing accumulation of these cells following total-body radiation or treatment with other genotoxic conditions, which, supposedly, should create lots of senescent cells. We also were puzzled that we were unable to see activation of p16-driven luciferase when we take tissues from these mice and isolated mesenchymal cells from these tissues in vitro and then turn them into senescents, and we failed to see activation of luciferase.

Again, all this together stimulated us to look at the nature of p16-positive cells in these mice and determined their nature, their origin, and their fate in vivo. We started from following the consequences of injection of cells, which would turn into senescents in vitro following injection in vivo into mice. And we labeled cells. We made cell senescents in culture by gum radiation. Then, we injected them intraperitoneal, subcutaneously, into mice. And we looked for their presence by monitoring the label which they were marked with.

Well, it appears that these labeled cells – their traces are disappearing quite quickly, and, within a few days, there are none left in the mice. However, if you put normal cells of similar origin, they actually last much longer. That was the first indication that there may be a mechanism of selective eradication of senescent cells in the body. To check this mechanism and one of our hypotheses was that this mechanism is associated with physical attack of some cells of immunity against senescent cells, and there’s supposed to be innate immunity because it’s happening immediately without any education over the organism.

Figure 5. Poly(I:C) abrogates elevated p16Ink4a expression in two independent in vivo models. 

We use a trick in which we embedded senescent cells created in vitro into algenate beads, small spheres consisting of a polymer, which enables to keep cells alive inside them, does not interfere with acquisition of nutrients and oxygen by the cells, but prevents any attack against the cells from any immunocytes. When we took these beads filled with senescent cells and put them in peritoneal cavity of mice, we were pleased to see that they are lasting four weeks without significant death, indicating that senescent cells, who disappear if they are injected without protective beads, are indeed killed by some, so far, unknown mechanism.

In order to identify the executors of senescent cells, we put these beads filled with senescent cells as bait inside, very peritoneal cavity of normal mice, and two weeks later, we pulled them out and analyzed who was accumulating in terms of how cells around these beads in lavage liquid, as well as in the capsule, which was formed around every bead.

Our results brought us to a very important and quite striking observational. The major part of the cells, which was so in these beads as well as in the lavage, appeared to be cells with macrophageal markers on them, which appeared to be bright fluorescence, meaning that they have activated p16, and also positive for beta-gal staining conducted under conditions we are using to reveal senescent cells. So we had to conclude that senescent cells put in the beads attract, probably, by the products of their secretion special subtypes of immune cells, significant proportion of which become reprogrammed to start expressing two biomarkers which people have been using to distinguish senescent cells.

We studied these macrophages in detail, and, after we published our first paper in which we describe this phenomenon, we published a second one, also in Aging, where their properties were described in further details. And we confident that these are bonafide macrophages, not only because they have have biomarkers, they have surface antigen specific for macrophages, but also they are capable of phagocytosis and, moreover, they can be selectively killed by liposome-embedded clodronate, a poison which only kills cells capable of phagocytosis. This killing could be done both in vitro and in vivo when you inject liposomal clodronate inside mice.

So, as far as the presence of these cells in the body of those mice which are not embedded with algenate beads with senescent cells, today, we are confident that these macrophages are accumulating in subcutaneous fat of aged mice in large numbers. And, again, they express biomarkers of macrophages that can be selectively eradicated by clodronate.

So, altogether, it means that the cells which become p16-positive vivo, not necessarily our senescent cells – our operations does not disprove that the signal which we and other investigators are seeing in these mice and increasing with age is not associated with senescent cells. So, potentially, certain proportion of cells we see are, indeed, senescent. However, we are confident that significant part of the signal goes from macrophages, which can be induced into the phenotype associated with expression of both senescent markers when they’re exposed to senescent cells. What is also interesting that this phenotype is reversible. And, in our second paper, we provide a number of physiological stimuli which can either stimulate or suppressed acquisition of this phenotype by macrophages.

All this, together, provides a very interesting step forward in evolution of the theory of aging associated with accumulation of certain specific cell types, contributing to the sterile inflammation occurring in tissues. Today, we can say that those cells which we claim to be the main source of that are not necessarily senescent, but also can be immunocytes who share with senescent cells some of their properties but are not senescent by nature and simply reprogrammed macrophages.

What is the relative impact of these macrophages versus senescent cells towards the process of aging is a very important question, not only from a theoretical standpoint, but also from practical standpoint because, from the time when senescent cells were claimed to be the key players of aging, there have been a substantial effort in the field in generating and testing senolytic compounds, drugs, emerging drugs, which potentially can have anti-aging effect due to eradication of senescent cells from the body.

Whether senolytic compounds would, indeed, solve the issue because, presumably, they will eliminate only a part of the p16-positive cells. To what extent, we need to redirect our attention to the senescent cell-associated macrophages as potential alternative source of secreted factors is an open question. And these are the questions which we are trying to address in our ongoing work, which stems from these observations. Thank you.

Click here to read the full study published in Aging.

Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Aging is a proud participant in the AACR Annual Meeting 2021 #AACR21
Aging is a proud participant in the AACR Annual Meeting 2021 #AACR21

Behind the Study: Dr. Alex Zhavoronkov

Aging Editorial Board member Dr. Alex Zhavoronkov discusses his 2020 research paper published by Aging, entitled, “Geroprotective and senoremediative strategies to reduce the comorbidity, infection rates, severity, and lethality in gerophilic and gerolavic infections.”

Researchers explain their studies that were published in Aging
Researchers explain their studies that were published in Aging

Behind the Study is a series of transcribed videos from researchers elaborating on their recent oncology-focused studies published in Aging. A new Behind the Study is released each Monday. Visit the Aging YouTube channel for more insights from outstanding authors.

Hello, my name is Alex Zhavoronkov and I’m the Founder and CEO of a company called Insilico Medicine. We are focused on the latest applications of artificial intelligence to drug discovery, biomarker development, and aging research. And I’m also a Chief Scientist at the Biogerontology Research Foundation. It’s a UK-based charity, 12 years old now founded in 2008. It’s called the Biogerontology Research Foundation because it’s focused primarily on biological and biomedical gerontology with support research worldwide. And we also conduct policy outreach, policy documents, and promote aging research worldwide.

We got into the coronavirus theme in mid-January as a company and also as an extended group of collaborators. At Insilico, we decided to go directly after viral proteins. So we have the ability at Insilico to identify new targets, but also to generate normal compounds very quickly using generative cell networks and reinforcement learning. So it’s kind of imaginative and strategy oriented AI to create molecules that specifically bind to the proteins of interest.

So we originally published and put out the paper and the molecules for the 3C-like main protease of the SARS-CoV-2. And we’re working with multiple collaborators worldwide to provide the molecules for their proteins of interest, and also we are generating a bunch of others. However, for the purposes of this paper we are not using AI in any way. It’s human intelligence and it is quite obvious that SARS-CoV-2 is more harmful to the elderly, the people over 50. So it’s infecting more people over 50, it is a much more severe and much more lethal in that age group.

So that is why it’s actually pretty unique compared to other viruses. So if you look at influenza and the other common viruses we do not see another virus, we do not see such effects in the elderly, so it’s a little bit more equal opportunity infections. For SARS-CoV-2 it infects mostly the elderly and there is actually no term to describe it right now. So in the paper that I put forward in Aging, I propose a new term so it’s gerophilic and gerolavic infection from Greek géros, old man and epivlavís, harmful. So it’s more harmful to the elderly, more severe in elderly. And gerophilic it’s géros again old man and philia is love, so it loves old people.

And if we’ll look at the data from Wuhan in China, you will see that 90% of the population, 89.7% of the population, who got the virus were over 30. And 99.2% of the population that died of it were over 30. So it’s really uneven distribution for both severe cases and lethal cases in the population. And one of the really important case studies that has been studied quite extensively is the Diamond Princess cruise ship. So the world’s most watched lab that came into attention because a few thousand people got stuck, very diverse population group was stuck on one cruise boat. And out of those few thousand, around 700 contracted the virus and most of them were over 65 and there were originally seven deaths, and a few more people died.

Figure 1. COVID-19 as a gerophilic and gerolavic infection.

And we see that people who had the infection, even with mild symptoms, they have dark spots in their lungs on CT. So it looks like they have some lesions and there is some fibrosis. Even if the disease has mild symptoms, in the elderly more so, it leaves the fibrotic trace. And in the paper, I’m hypothesizing that the disease is associated with immunosenescence. So both the involution of the thymus and many other processes that lead to immunosenescence. Immunosenescence leads to infection, so here you have of course chances of death. Infection leads to more damage and loss of homeostasis and that leads to accelerated aging. And also acceleration of age-related pathology also increase the chances of death that lead to more immunosenescence. So it’s kind of the vicious circle of immunosenescence and infection.

And there have been many studies in the past showing that some of the geroprotectors like sirolimus, rapamycin, are maybe effective in potentiating response to vaccines and also preventing infection in the elderly. So it’s paradoxical observation that immunosuppressant, like rapamycin, might have immunostimulatory effects. And there was anecdotal evidence showing that it protects the elderly from influenza and other virus not infections. It’s pretty obvious to try something like rapamycin that is reasonably safe in low doses. So in high doses it has substantial side effects, but in low doses it’s very well tolerated.

So there are others what is called rapalogs, very famous one is called everolimus. It’s so very close structural analog to sirolimus, developed by Novartis which has claimed to be selective to specific coattails and outdoor complex that make it more beneficial for aging and for other diseases. However, I would really like to see more evidence of that because those are very close structural analogs and there are other inhibitors that serve the same purpose. So 2013, Novartis conducted few experiments with everolimus, the drug is called RAD001 and demonstrated that in healthy elderly patients a low dose treatment with RAD001. Results in even potentiation and less infection with influenza and also potentiation of vaccines. So that was promising news.

So they published in 2014 in Science Translational Medicine and it was very promising study. Then in 2018, they showed that a combination of everolimus and another ToR inhibitor also results in immune potentiation and prevention of several infections, primarily influenza. So for influenza, they published in Science Translational Medicine, and a spinoff out of Novartis took those molecules into clinic, into Phase 3. And in Phase 3, they decided to instead of using everolimus, they used the molecule called BEZ235 rebranded as RTB101 which had high concentrations. It’s also a PI-3K inhibitor, so it’s not a very selective inhibitor or ToR, and they failed in Phase 3.

But they haven’t used RAD001 or sirolimus in combination or as control. I believe that it’s likely to be because of the molecule and also patient selection, so it should be biomarker used for that. But those promising early experiments clinical studies with RAD001 and also substantial evidence from the clinic met-studies showing that rapamycin is potentiating a vaccine response and immune status in the elderly. That gives us very promising data to try sirolimus in Phase 3 in low doses maybe once a week, maybe in combination with other geroprotectors like metformin, like NAD boosters, like senolytic to potentiate the immune system of the elderly before they get sick.

So in this paper, I also want to highlight that it’s not a medical advice, it’s not a recommendation, it’s a call for a clinical trials of an alternative view on how to address COVID-19 also SARS-CoV-2 and prevent infection and increase survival in the elderly, and also make it less severe for the elderly. So in this paper, I’m calling for clinical trials of rapamycin, a very well known geroprotector. It was actually implicated in Aging by Professor Mikhail Blagosklonny at Roswell Park in early 2000s. So 2004, 2005, 2006 with seminal papers showing that cancer agent is very likely to be also an anti-aging compound, and I now believe that this compound should be tried in multiple age associated pathologies and also for immmunosenescence, versing immunosenescence.

But other geroprotectors, promising geroprotectors, like metformin, can be very well combined with rapamycin, NAD boosters like nicotinamide riboside, nicotinamide mononucleotide may be tried in clinical trials. Senolytic, these could be tried also after COVID because of the fibrotic build-up, fibrosis in the lungs and also as rehabilitation after COVID. I think that some other promising geroprotectors including [inaudible] B3 activation. Again, that’s much less explored, could lead to gene clocks. So since 2013 there has been a revolution in gene clocks starting from our Panam and Horvath work showing that methylation data is very predictive of chronological age.

There are very highly accurate markers of aging but there are many others, so like lab tests, very simple clinical blood tests can be used to predict chronological age and my group published the first ones using deep learning. And there are many others including microbiomics aging clock, including imaging aging clocks, including transcriptomic aging clocks, and proteomics aging clocks, and whatever data there is longitudinal data that could be used to construct clocks should be collected during the clinical trials. And we should look at whether some of the molecules are making you younger or older compared to the chronological age from the various data types and look at the effects.

So that’s the current proposal on the paper, so I’m calling to try geroprotectors to protect the elderly, to potentiate their immune response to COVID, and also to try the aging clocks for both clinical trials enrollment and for monitoring to see what molecules are making you younger or older on pretty much every level. I’m also calling for those clinical trials because after COVID-19, after the epidemic is over, we’re going to have major economic consequences. There’s a lot of people who have been out of work, there’s been substantial capital influx from pretty much every government into the economy, so quantitative easing that might lead to inflation. We don’t know what’s going to happen to the economies of developed countries.

Previously, I published several papers and a book on economics of aging showing that increases in productive longevity would lead to substantial economic growth. If we manage to reduce the amount of money being spent on healthcare in the elderly by preventing disease and by rejuvenating the elderly, making them more resilient to disease, just that leads to unprecedented economic growth. And of course, if we make them more productive and contributing to the labor force longer, we will see unprecedented economic growth even further.

So we’re talking about double digit growth in developed countries. So here we can kill many birds with one stone, so to speak, even though I don’t like the word “kill.” And if we can try geroprotectors to prevent disease, but at the same time we can boost the economy after the epidemic is over if some of those geroprotectors show efficacy and people start believing more that aging is plastic and we can push the envelope in that area and really rejuvenate the elderly.

So that’s the paper and thank you very much for watching this. Stay healthy.

Click here to read the full study published in Aging.

Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

Aging is a proud participant in the AACR Annual Meeting 2021 #AACR21
Aging is a proud participant in the AACR Annual Meeting 2021 #AACR21

Trending with Impact: Epigenetic Age Decreased in Diet & Lifestyle Study

Researchers conducted an eight-week study on diet and lifestyle among a small cohort of 43 male participants between the ages of 50 and 72.

Happy senior couple buying fresh food at the market

The Trending with Impact series highlights Aging publications attracting higher visibility among readers around the world online, in the news, and on social media—beyond normal readership levels. Look for future science news about the latest trending publications here, and at

Listen to an audio version of this article

In addition to the well-known personal and social costs of aging, the economic costs of aging are also considerably high. Research finds that investing in delaying aging is much more cost-effective than disease-specific spending. A study found that if Americans as a whole delayed their aging by 2.2 years (while extending healthspan), economic savings over 50 years could amount to a cumulative $7 trillion.

“The growing health-related economic and social challenges of our rapidly aging population are well recognized and affect individuals, their families, health systems and economies.”

Across three countries (the United States, Canada, and Israel), researchers from the Institute for Functional Medicine, American Nutrition Association, National University of Natural Medicine, Ariel University, McGill University, and the University of California, conducted a new pilot study on the effects that diet and lifestyle intervention have on aging among healthy males between the ages of 50 and 72. This research paper was published in Aging’s Volume 13, Issue 7, and entitled, “Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial.”

The Study

The researchers organized a cohort of 43 healthy adult males between the ages of 50 and 72. Half of the participants (n=21) completed an eight-week treatment program, and the other half (control group=22) received no intervention. Interventions within the treatment program included regimented diet, sleep, exercise, relaxation guidance, and supplemental probiotics and phytonutrients. Prior to the treatment program, participants were enrolled in a preliminary education week to become acquainted with the researchers’ prescribed dietary and lifestyle interventions.

“To our knowledge, this is the first randomized controlled study to suggest that specific diet and lifestyle interventions may reverse Horvath DNAmAge (2013) epigenetic aging in healthy adult males.”

Diet Prescription

Researchers prescribed the participants with mostly (not entirely) plant-based diet instructions to consume measured portions of liver, eggs, dark leafy greens, cruciferous vegetables, colorful vegetables (excluding white potatoes and sweetcorn), beets, pumpkin seeds (or pumpkin seed butter), sunflower seeds (or sunflower seed butter), methylation adaptogens, berries, rosemary, turmeric, garlic, green tea, oolong tea, animal protein, and low glycemic fruit. They were prescribed two daily doses of PhytoGanix®, which is a combination of organic vegetables, fruits, seeds, herbs, plant enzymes, prebiotics, and probiotics. A daily two-capsule dose of UltraFlora® Intensive Care, containing Lactobacillus plantarum, was also prescribed.

General guidance included that participants should choose organic food products over conventional, and to consume “healthy” oils and balanced types of fat, including coconut, olive, flaxseed, and pumpkin seed oil. Participants were told to avoid consuming added sugar, candy, dairy, grains, legumes/beans, and to minimize using plastic food containers. In addition, the prescription instructed participants to stay hydrated and not to eat between 7pm and 7am.

Lifestyle Prescription

The participant exercise prescription was a minimum of 30 minutes per day for at least five days per week, at 60-80% intensity. They completed two 20 minute breathing exercises daily, using the Steps to Elicit the Relaxation Response process developed by Herbert Benson, MD. Participants were prescribed to sleep a minimum of seven hours per night.

Measuring Epigenetic Age 

“Currently, the best biochemical markers of an individual’s age are all based on patterns of methylation [5].”

To extract DNA from the participants, researchers collected saliva samples and evaluated their RNA and DNA. They used methylation kits, assays, and the Horvath DNAmAge clock to conduct genome-wide DNA methylation analysis and calculate epigenetic age (DNAmAge) at the beginning of the study, and at the end.

“Horvath’s DNAmAge clock predicts all-cause mortality and multiple morbidities better than chronological age. Methylation clocks (including DNAmAge) are based on systematic methylation changes with age.”


According to the Horvath DNAmAge clock, participants in the treatment group scored an average 3.23 years younger at the end of the eight-week program when compared to participants in the control group. While these findings are meaningful, additional studies with a larger cohort size, longer duration, and other human populations will be needed in order to confirm these results.

“Notably, the shorter timeframe of this study and the scale of potential reduction, while modest in magnitude, may correlate with meaningful socioeconomic benefits, and appears to have the potential to be broadly achievable.”

Click here to read the full study, published on

Click the links below for more information on corresponding author, Dr. Kara Fitzgerald:
Biological Aging Summary | Instagram | Facebook | Twitter | General Site | Younger You Program

Aging is an open-access journal that publishes research papers monthly in all fields of aging research and other topics. These papers are available to read at no cost to readers on Open-access journals offer information that has the potential to benefit our societies from the inside out and may be shared with friends, neighbors, colleagues, and other researchers, far and wide.

For media inquiries, please contact

  • Follow Us